
© All Rights Reserved 2014 | Neo Technology, Inc.

Inside Neo4j's Graph
Query Engine

Stefan Plantikow

© All Rights Reserved 2014 | Neo Technology, Inc.

• Neo4j

• Graphs: Benefits, Model, Querying

• Cypher Query Language

• Query Engine (+ some scala snippets) 
 

• Joint work from the Neo4j Cypher Team

© All Rights Reserved 2014 | Neo Technology, Inc.

Neo4j is a Graph
Database

© All Rights Reserved 2014 | Neo Technology, Inc.

Graphs != Charts

Graph DB Knowledge

Know  
Graph DBs

Don’t know	

Graph DBs Charts != Graphs

© All Rights Reserved 2014 | Neo Technology, Inc.

Directed Graph

me

© All Rights Reserved 2014 | Neo Technology, Inc.

name:
Stefan

id: @gmail

title:
Cloud Atlas

type:
Book

:ORDERED
copies: 5

when: 2012

name:
Chris

id: @gmail

:FRIEND
since: 2013

title:
Cloud Atlas

type:
Movie

:BROWSED
times: 100

Labeled Property Graphs

Customer

Customer

Article

Article

TopHit

High Volume

© All Rights Reserved 2014 | Neo Technology, Inc.

Graphs

• Nodes („things“)

• Relationships

• Math: multigraphs, hypergraphs, probabilistic graphs, ...

• Graph DBs: Property Graphs (Directed Multigraph with Properties)

• Key-Value Properties: name, last login, number of posts, ...

• Label: Person, Article, Sale, ...

• Indices: by name, by ID, …

© All Rights Reserved 2014 | Neo Technology, Inc.

Neo4j

• Dual-Licensed: Open Source (A(GPL)) / Commercial

• Transactional (ACID / Read-Committed)

• Server with Web-UI

• High Availability

• Tooling: Shell, Backup, Monitoring (JMX), ..

• Interfaces: REST API, Core API, Cypher, Language Bindings

© All Rights Reserved 2014 | Neo Technology, Inc.

Neo4j Implementation

• Kernel: Java 
Web-UI: Javascript

• Few dependencies

• kernel.jar: 3 MB

• DirectByteBuffer

• GC-resistent custom caches

• … 
 

• Cypher (Query Language):  
Scala 2.10

• Runtime w. kernel integration

• Enterprise Modules

• HA

• Online Backup

• … 

© All Rights Reserved 2014 | Neo Technology, Inc.

Neo4j Browser

After Installation: http://localhost:7474

http://localhost

© All Rights Reserved 2014 | Neo Technology, Inc.

Why Graphs

© All Rights Reserved 2014 | Neo Technology, Inc.

Graph Benefits

• Natural Model

• Whiteboard Friendly

• Match OOP

• Extensible and Uniform

• Ease Data Integration

© All Rights Reserved 2014 | Neo Technology, Inc.

Graphs are Everywhere
A Nexus of Forces

© All Rights Reserved 2014 | Neo Technology, Inc.

– Forrester Research

„25% of enterprises will be using graph
databases by 2017“

© All Rights Reserved 2014 | Neo Technology, Inc.

Use-Cases

• Social Networks &
Recommendations

• Geospatial

• Infrastructure as a Service

• Business Intelligence

• Content Management

• Access Control

• Bioinformatics

• Genealogy

• Telco

• Finance

• ...

© All Rights Reserved 2014 | Neo Technology, Inc.

Modeling with Graphs

© All Rights Reserved 2014 | Neo Technology, Inc.

From whiteboard…

© All Rights Reserved 2014 | Neo Technology, Inc.

…to data model

name:
Adam

id: adam@

text:
Look at this!

on:
Mar-2013

name:
Sarah

:SHARED
:FRIEND_OF
since: 1995

:LIKES

text:
Funny!
source:
mobile

:COMMENTED
when: 2013

:ABOUT

image:
lolcat1.gif
downloads:
5.000.000

User

User

Post

CommentPost

FileResource

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher Graph Query
Language

© All Rights Reserved 2014 | Neo Technology, Inc.

Querying Graphs

• for a user with the name „Stefan“ find
all articles that have been browsed
by any of his friends at least 4x 
 
return them sorted by times browsed 
 
 
 
 
 

• find instances of a given pattern 
 
 
 
and compute a result

© All Rights Reserved 2014 | Neo Technology, Inc.

Querying Graphs

• MATCH (n {name: „Stefan“), 
MATCH (n)-[:FRIEND]->(f), 
 (f)-[r:VIEWED]->(a)  
 
RETURN a, collect(r) as score  
ORDER BY score 
 
 
 
 
 
 

• find instances of a given pattern 
 
and compute a result

© All Rights Reserved 2014 | Neo Technology, Inc.

Querying Graphs

• Find Patterns

• Describe matching nodes and
relationships and how they
should be connected

• Node und Relationship identified
via entity ID or primary key

• Indices 
Exact, full text, geospatial 
 

• Build result

• Sort

• Aggregate

• Combine & Filter & Transform 

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher

• Neo4j‘s

• Declarative

• Graph

• Query

• Language 

• or: 
SQL for Graphs

// Cypher 
MATCH (actor:Actor)-[:ACTS_IN]->(movie:Movie)  
RETURN actor.name, movie.title
!
// SQL 
SELECT Person.name, Movie.title  
FROM Person  
 JOIN Actor on  
 Person.person_id = Actor.person_id  
 JOIN Movie on  
 Movie.movie_id = Actor.movie_id  

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher: Basic Example

// get node
MATCH (a:Person {id: 0}) RETURN a

// return friends
MATCH (a:Person {id: 0})-->(b) RETURN b

// return friends of friends
MATCH (a:Person {id: 0})--()--(c) RETURN c

• Declarative query langue with SQL-like clause syntax

• Visual graph patterns

• Tabular results

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher: Filter and Sort

// lookup all nodes as 'n', constrained to name 'Stefan'
MATCH (n:People) WHERE n.name='Stefan' RETURN n

// filter nodes where age is less than 30
MATCH (n:People) WHERE n.age < 30 RETURN n

// filter and aggregation using a regular expression
MATCH (n:People) WHERE n.name =~ “Mat.*“ RETURN count(n)

// find nodes with a property and return first 3 found
MATCH (n:People) WHERE has(n.name) RETUN n LIMIT 3

// find the 5 oldest people
MATCH (n:People) RETURN n ORDER BY n.age LIMIT 5

• Filter using predates in WHERE

• Aggregate, sort, limit

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher: Graph Queries

// books liked by friends of friends
MATCH (stefan:People {name: „Stefan“}),
 (stefan)-[:FRIEND..2]->(friend)-[:LIKE]->(b:Book)
RETURN DISTINCT b
!
// shortest path between two people
MATCH
 p = shortestPath((martin:People)-[*..15]-(oliver:Person))
WHERE
 martin.name = 'Martin Sheen' AND oliver.name = 'Oliver Stone'
RETURN p

• Variable Length Path

• Shortest Path

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher: Updating Nodes and Relationships

// create node
CREATE (a:People {name: 'Andres'})

// create relationship between bound nodes
CREATE (stefan)-[:KNOWS]->(andres)

// ensure unique node exists and set title
MERGE (b:Book {id: 123}) SET b.title = 'Cloud Atlas'

// match and update
MATCH (n:People) WHERE n.age = 34 SET n.age = 35

// find node and delete it
MATCH (n:People) WHERE n.name = 'Dr. Evil' DELETE n

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher: Much more

• Handling path sets

• Functional expressions: Extract, Filter, Reduce

• Optional Match (Outer Join)

• Profiling

• ...

© All Rights Reserved 2014 | Neo Technology, Inc.

Query Planning

© All Rights Reserved 2014 | Neo Technology, Inc.

Query Planning

• From Cypher to Results

• Need to build operator tree

• And run it

© All Rights Reserved 2014 | Neo Technology, Inc.

MATCH (a:Person)-[:FRIEND*..2]->(b)
WHERE a.name = „Stefan“ AND  
 a.city <> b.city AND  
RETURN a.name AS a,  
 b.name AS b, b.city AS city

a b city
„Stefan“ „Luli" Beijing
„Stefan“ „Francesca“ Rome
„Stefan“ „Jack“ New York City

Logical
Plan

Physical
Plan

© All Rights Reserved 2014 | Neo Technology, Inc.

 Enterprise Graph Database Server

Integration
Code

Query
Text

Parsing

Parser

AST

Semantic
Analysis

SemCheck

Typed
AST

Normalization

Planning

Planner

Logical
Plan

Physical
Plan

Execute

Runtime

Results

DocJavacompat &
Tooling StatisticsPlan CacheVersion

Dispatch

© All Rights Reserved 2014 | Neo Technology, Inc.

• We use parboiled (not yet version 2)

• Packrat Parsing Library in scala

• Output is AST (+ back references to input string)

• Grammar has 140+ ASTNode classes

• Example: DISTINCT split("abba", "b") => ["a", "", "a"]

Query
Text AST

Parsing

Parser

© All Rights Reserved 2014 | Neo Technology, Inc.

• Parsing rules manipulate value stack

• Rule firing has stack effect  
(similar to how concatenative languages work)

Query
Text AST

Parsing

Parser

© All Rights Reserved 2014 | Neo Technology, Inc.

• SemCheck: Ensure the query „makes sense“, e.g.

• Does not return many columns with same name

• Relationships in CREATE are directed

• Nicer error messages for difficult to parse
conditions

AST

Semantic
Analysis Typed

AST

SemCheck

© All Rights Reserved 2014 | Neo Technology, Inc.

• SemCheck:Type Checking

• Primitives

• Strings

• Numbers (Integral and Floating)

• Booleans

• Collections<T>

• Map<String, T>

• Graph entities (Nodes, Relationships) are treated as Map<String, Any>

• Not always known: MATCH n RETURN n.prop

• Deferred to runtime (form of gradual typing)

AST

Semantic
Analysis Typed

AST

SemCheck

© All Rights Reserved 2014 | Neo Technology, Inc.

• SemCheck: Implementation

• Hand-rolled State Monad

• Walk AST tree keeping track of scope and type
information

• Collect errors along the way

AST

Semantic
Analysis Typed

AST

SemCheck

© All Rights Reserved 2014 | Neo Technology, Inc.

• SemCheck: Implementation

• Walk AST tree keeping track of scope and type
information

• Collect errors along the way

• Hand-rolled State Monad

AST

Semantic
Analysis Typed

AST

SemCheck

© All Rights Reserved 2014 | Neo Technology, Inc.

• Rewriting AST Nodes into normal form

• Expand aliases: RETURN * => RETURN x AS x, y AS y

• Constant folding: 1+2*4 => 9

• Name anonymous pattern nodes: MATCH () => MATCH (n)

• Inlining

• …

• Own rewriter framework

• Allows pattern matching and replacing of tree nodes  
(bottom-up, top-down)

Normalization

© All Rights Reserved 2014 | Neo Technology, Inc.

Normalization

MATCH (n) WHERE id(n) = 12 =>  
MATCH n WHERE id(n) IN [12]

© All Rights Reserved 2014 | Neo Technology, Inc.

• Build semantic model from AST

• Turn semantic model into logical plan

• Turn logical plan into physical plan

Typed
AST

Planning
Logical

Plan

Planner

Physical
Plan

© All Rights Reserved 2014 | Neo Technology, Inc.

• Build semantic model from AST

• Which nodes?

• Which relationships?

• Which predicates?

• How to return result

• …

Typed
AST

Planning
Logical

Plan

Planner

© All Rights Reserved 2014 | Neo Technology, Inc.

• Construct a logical plan

• Iteratively search space of candidate plans

• Per iteration:  
Gradually build new candidate plans

• Use statistical cost model to distinguish between
good and bad candidates 
(„join ordering“)

• Keep going until query solved by a good plan

Typed
AST

Planning
Logical

Plan

Planner

© All Rights Reserved 2014 | Neo Technology, Inc.

• Logical Plan

• Tree of operators

• Similar to relational databases

• Different operators

• Physical Plan

• Choose physical implementation for  
logical operators

Typed
AST

Planning
Logical

Plan

Planner

Physical
Plan

© All Rights Reserved 2014 | Neo Technology, Inc.

MATCH  
 (a:Artist), (b: Artist),
 (a)-[r:WORKED_WITH*..5 {year: 2014}]->(b)
RETURN
 a.name AS name, collect(b) AS colleagues 
 ORDER BY size(colleagues)

• Node a

• Node b

• Relationships r

• a is an Artist, b is an Artist, r.year = {year}, …

• Projection with aggregation and sorting

© All Rights Reserved 2014 | Neo Technology, Inc.

MATCH  
 (a:Artist), (b: Artist),
 (a)-[r:WORKED_WITH*..5 {year: 2014}]->(b)
RETURN
 *

Compiler CYPHER 2.2-cost!
!
Filter!
 |!
 +Var length expand!
 |!
 +NodeByLabelScan

© All Rights Reserved 2014 | Neo Technology, Inc.

 MATCH (al:Album)
 WHERE (:Artist)-[:CREATED]->(al)
 AND (al)<-[:APPEARS_ON]-(:Track)
RETURN *

SemiApply(0)!
 |!
 +SemiApply(1)!
 | |!
 | +NodeByLabelScan(0)!
 | |!
 | +Filter(0)!
 | |!
 | +Expand(0)!
 | |!
 | +NodeByLabelScan(1)!
 |!
 +Filter(1)!
 |!
 +Expand(1)!
 |!
 +NodeByLabelScan(2)

© All Rights Reserved 2014 | Neo Technology, Inc.

• Need to run plan

• Plans are converted to nested iterators

• Result is obtained by pulling from the top iterator

• Room for improvement

Execute
Results

Runtime

Physical
Plan

© All Rights Reserved 2014 | Neo Technology, Inc.

Runtime Code
Generation

Execute
Results

Runtime

Physical
Plan

© All Rights Reserved 2014 | Neo Technology, Inc.

Compiling Queries
• Compilers >> Interpreters

• Cypher: Mix of dynamic and static types

• Static types: Ahead of time compilation

• Dynamic types: Runtime JIT, Tracing

• Mixing both: Gradual type systems

© All Rights Reserved 2014 | Neo Technology, Inc.

Code generation options on the JVM

• Generate strings and compile

• Write your own code generator

• Annotation Processing

• Use dynamic languages: Ruby, Clojure, JS

• Use static languages: scala, xtend

• No true staging language for the JVM

© All Rights Reserved 2014 | Neo Technology, Inc.

Truffle & Graal
• Truffle

• Execution as evaluation of tree of nodes

• Writer interpreter by writing new tree nodes

• Runtime specialization for primitive types

• Extra speed up via Graal VM

• Performance gains: x5 - x10

© All Rights Reserved 2014 | Neo Technology, Inc.

Neo4j Enterprise Graph Database Server

Query
Text AST

Parsing

Parser

Semantic
Analysis Typed

AST

SemCheck

Planning
Query
Plan

Planner

Execute
Results

Runtime

Integration
Code

Javacompat &
Tooling

Version
Dispatch Plan Cache Statistics

Normalization

© All Rights Reserved 2014 | Neo Technology, Inc.

Takeaways

• Querying graphs with Cypher is fun and easy

• A cost based optimizer improves performance
substantially

• Neo4j is a graph database

© All Rights Reserved 2014 | Neo Technology, Inc.

Learn More

http://www.neotechnology.com

© All Rights Reserved 2014 | Neo Technology, Inc.

Meet Neo4j

October 22 
San Francisco

http://www.graphconnect.com

http://www.graphconnect.com

