
BOF5619 - Lean Beans (are made of this):

Command pattern vs. MVC

Michael Bar-Sinai (@michbarsinai)
http://www.iq.harvard.edu/people/michael-bar-sinai
http://mbarsinai.com

Philip Durbin (@philipdurbin)
http://www.iq.harvard.edu/people/philip-durbin
http://greptilian.com

1 / 54

Agenda

1. Intro, real world challenges
2. MVC, MVC in Java EE, classic command
3. Command pattern adaptations

Java EE
Modern programming
Permission system

4. The Lean Bean Design Pattern

Slides:
https://github.com/IQSS/javaone2014-bof5619

Code:
https://github.com/IQSS/dataverse

2 / 54

Two real world challenges

Dataverse 4.0 requirements

1. Maximal code re-use between API and GUI
2. Host sensitive data with granular permissions

https://github.com/IQSS/dataverse

3 / 54

Official GoF definition

Command Pattern:

Encapsulate a request as an object,
thereby letting you parameterize
other objects with different
requests, queue or log requests, and
support undoable operations.

Objects in play:

Client
Command
Receiver
Invoker

6 / 54

Waitresses and Cooks

Customer
Order
Waitress
Cook

7 / 54

You Are In Command Now

(Admiral Piett)

8 / 54

Giving Commands

1. stop people with droids
2. check identification

9 / 54

The Command interface

public interface Command {
 void execute();
}

10 / 54

Code as Data

The command pattern allows us to treat a block of code (and its parameters) as
data. Benefits:

Reuse methods from different controllers
Store commands in data structures
Queue commands
Create command macros, a sequence
Commands calling other commands
Test better
Log better, show command history
Easy to extend to support undo operations

We can do all this (and more!) with commands.

But there's one very special thing we can also do with commands...

19 / 54

Ignore Them.

20 / 54

Why We Chose Command

For Dataverse 4.0, a Java EE 7 app which needs to support sensitive data and a
full API, we wanted:

1. Maximal code re-use between the API and the UI
2. By-design, permission-based security.

With some extensions and infrastructure (shown later) - we got just that.

21 / 54

Back to Java EE

23 / 54

I feel a great disturbance
in the source.

26 / 54

Nothing New Under The Sun

EJB Design Patterns: Advanced Patterns, Processes, and Idioms by Floyd
Marinescu, 2002

"Use the Command pattern to wrap business
logic in lightweight command beans that
decouple the client from EJB, execute in one
network call, and act as a façade for the EJB
layer." (p. 19)

Command vs. Session Façade + Business
Delegate

No invoker: "Applied to EJB, the Command
Server class is a stateless session bean that
accepts a command as a parameter and
executes it locally." (p. 22)

http://www.theserverside.com/news/1369776/Free-Book-EJB-Design-Patterns
27 / 54

Command Invoker, Adapted

We called the invoker Engine, as the term is more familiar.

public interface DataverseEngine {

 public <R> R submit(Command<R> aCommand) throws CommandException;

}

Modernized invoker - replaced the set→execute→get sequence with a
single method call.
submit is a generic method, allowing type-safe execution of any command.

Real code, comments removed. 31 / 54

Sample Command: Rename a Dataverse

@RequiredPermissions(Permission.UndoableEdit)
public class RenameDataverseCommand
 extends AbstractCommand<Dataverse>{
 private final String newName;
 private final Dataverse renamed;
 public RenameDataverseCommand(User aUser,
 Dataverse aDataverse, String aNewName) {
 super(aUser, aDataverse);
 newName = aNewName;
 renamed = aDataverse;
 }

 @Override
 public Dataverse execute(CommandContext ctxt) throws CommandException {
 if (newName.trim().isEmpty()) {
 throw new
 IllegalCommandException("Dataverse name cannot be empty", this);
 }
 renamed.setName(newName);
 return ctxt.dataverses().save(renamed);
 }
}

Actual code 38 / 54

Permissions and Commands

In code, permissions live in an enum. Each permission:
Holds a basic descriptive text.
States which objects it applies to.

In the database, permission live in a bit field
Very fast, but must be kept under 64.
No DB joins needed

Testing if a permission exists in a permission set is a bitwise operation.

public enum Permission {
 Discover("See and search content", DvObject.class),
 Download("Download the file", DataFile.class),
 AccessUnpublishedContent("Access unpublished content",
 DvObject.class),
 AccessRestrictedMetadata("Access metadata marked as\"restricted\"",
 DvObject.class),
 UndoableEdit("Edits that do not cause data loss", DvObject.class),
 DestructiveEdit("Edits that cannot be reversed, such as deleting data",
 DvObject.class),
// ...

39 / 54

Supporting Multiple Receivers

When commands involve more than a single receiver, the
RequiredPermissionMap annotation can be used.

@RequiredPermissionsMap({
 @RequiredPermissions(dataverseName = "moved",
 value = {Permission.UndoableEdit, Permission.GrantPe
 @RequiredPermissions(dataverseName = "source",
 value = Permission.UndoableEdit),
 @RequiredPermissions(dataverseName = "destination",
 value = Permission.DestructiveEdit)
})
public class MoveDataverseCommand extends AbstractVoidCommand {
 // ...
 public MoveDataverseCommand(User aUser,
 Dataverse moved, Dataverse destination) {
 super(aUser, dv("moved", moved),
 dv("source",moved.getOwner()),
 dv("destination",destination));
 this.moved = moved;
 this.destination = destination;
 }

40 / 54

Easy Testing

Since the command and the context are POJOs, we can mock them easily.

//...
@Before
public void setUp() {
 testEngine = new TestDataverseEngine(new TestCommandContext(){...});
//...
@Test
public void testValidMove() throws Exception {
 testEngine.submit(
 new MoveDataverseCommand(null, childB, childA));

 assertEquals(childA, childB.getOwner());
 assertEquals(Arrays.asList(root, childA), childB.getOwners());
}

@Test(expected=IllegalCommandException.class)
public void testInvalidMove() throws Exception {
 testEngine.submit(
 new MoveDataverseCommand(null, childA, grandchildAA));
 fail();
}

42 / 54

Can we remove all service beans?

Yes

Command context can give direct access to the entity manager, JMS
resources and the like, so commands could use them directly.
There's just one problem...

44 / 54

Can we remove all service beans?

Yes

Command context can give direct access to the entity manager, JMS
resources and the like, so commands could use them directly.
There's just one problem...

It's the Wrong Question

45 / 54

Should We Remove All Service Beans?

Probably Not

We tried that. Didn't work well, since the commands became too detailed.

Current Status - a more balanced approach

Commands deal with: Operations on model objects.

Service Beans deal with: save, update, delete and various lookups of model
objects (e.g. findById).

47 / 54

Should We Remove All Service Beans?

Probably Not

We tried that. Didn't work well, since the commands became too detailed.

Current Status - a more balanced approach

Commands deal with: Operations on model objects.

Service Beans deal with: save, update, delete and various lookups of model
objects (e.g. findById).

Hence, we call this:

48 / 54

the

Lean Bean

Design Pattern

49 / 54

Lean Beans (are made of this)

Actions on models done by Command objects
CRUD done by lean beans

Benefits

Code as data
Reuse commands from various places
Permission validation baked into the system
Commands are POJOs:

Reusable outside of Java EE
Testable using JUnit

Since we use beans, which are easier to mock than
EntityManagers

Easy to find functionality - look at the class' name

50 / 54

Lean Beans (are made of this)

Actions on models done by Command objects
CRUD done by lean beans

Downside

Some infrastructure needed
Engine
Permission annotations

Requires some learning - not a mainstream solution

Also, we're just starting this - so not a lot of experience yet.

51 / 54

Future Work

Some issues we already found out, and will deal with soon:

As Annotations are static, required permissions can't be dynamic

This conflicts with, e.g. The Decorator pattern. We will use a static-dynamic
combo, where the basic command implementation uses reflection to return
the required permissions, but subclasses can override this behavior.

Permission pre-flight check

Current implementation requires an actual object to work on, but the database
layer allows for permission checks using the entity's id only - no real need to
retrieve the object. When it makes sense, we need to take advantage of this.
Somehow.

52 / 54

