BOF5619 - Lean Beans (are made of this):
Command pattern vs. MV(

i Michael Bar-Sinai (@michbarsinai)
* http://www.ig.harvard.edu/people/michael-bar-sinai
SN http://mbarsinai.com

Philip Durbin (@philipdurbin)
| http://www.iq.harvard.edu/people/philip-durbin
< http://greptilian.com

S10QSS
| —

The Inslitute for Quantiative Social Science
& HARVARD UMNIVERSITY

1/54

Agenda

1. Intro, real world challenges
2. MVC, MVC in Java EE, classic command
3. Command pattern adaptations
o Java EE
o Modern programming
o Permission system
4. The Lean Bean Design Pattern

Slides:
https://github.com/IQSS/javaone2014-bof5619

Code:
https://github.com/IQSS/dataverse

2 /54

Two real world challenges

Dataverse 4.0 requirements

1. Maximal code re-use between API and GUI
2. Host sensitive data with granular permissions

Dataverse O%

https://github.com/IQSS/dataverse

3/54

Classic MV(

Goal: Separate data from its representation

X

user

view controller model

click button _
-~

button_clicked() _

validate
< |

change

user

view controller model

e Model: Business objects
e View: What the users sees
e Controller: Manipulates the model according to inputs from the view

Developed by Trygve Reenskaug at Xerox PARC in 1979. Not a GoF pattern.
4/54

Desion Patterms
ot O R e

The Command Pattern

Goal: Capture operations on the model as data

5 il

view controller invoker model

user

click button _
>

button_clicked() _

new command

set(command)

execute()

_ execute()

change

Y

user : p
view controller command invoker model

A request is a first-class object.

5/54

Official GoF definition

Command Pattern:
Encapsulate a request as an object, GSIgn dLLETTIN
thereby letting you parameterize Elements of Reusable £
other objects with different Object-Oriented Software 2
requests, queue or log requests, and Erich Gamyg
support undoable operations. Ralph Johnson
John Vlissides Z
Objects in play:
 Client
« Command M-S SRR >
° Receiver Foreword by Grady Booch
i~
* InVOker Comigited katerial ﬁ@ﬂ

6/54

Waitresses and Cooks

equpling mistakes |

e Customer A Brain-Friendly Guide |
* Order Head First |
» Waitress [)ggign Patterns
e Cook i O
s bl |

|

Load the pattarns
1 that matter straight |
into your brain |

$!

Ui] O |

|
|
|
See why Jim's
love life improved |
when ha cub dewn |

o
Diseover the secrets
of the Fatterns Gury

Find out how
Starbuzz Coffea doubled
their stock price with
the Decorator patiern

his inheritances

O'REILLY* Eric Freeman &

7/54

You Are In Command Now

(Admiral Piett)

8/54

Giving Commands

1. stop people with droids
2. check identification

9/54

The Command interface

public interface Command {
void execute();
b

10/ 54

Complete CheckldCommand

public class CheckIdCommand implements Command {
private Suspect suspect; // receiver

public CheckIdCommand(Suspect suspect) {
this.suspect = suspect;

}
public void execute() {
try {
System.out.println("Id for " + suspect.getName()
+ " is " + suspect.getId());
} catch (Exception ex) {
System.out.println("Move along, move along.");
}
+

11/ 54

The Client

System.out.println("# Mos Eisley checkpoint");

Suspect obiwan = new Jedi("Obiwan"); // receiver
Command checkIdCommand = new CheckIdCommand(obiwan);

StormTrooper stormTrooper = /% Recruit trooper here x/
stormTrooper.setCommand(checkIdCommand); // invoker
stormTrooper.execute(); // Move along, move along.

e ties all the object together
e command bound to receiver
» invoker is given a command to execute, and told to execute it

12 /54

One Invoker, Two Commands

StormTrooper stormTrooper = /*x TX-421 %/

System.out.println("# Mos Eisley checkpoint");
Suspect obiwan = new Jedi("Obiwan"); // receiver
Command checkIdCommand = new CheckIdCommand(obiwan);
stormTrooper.setCommand(checkIdCommand) ;
stormTrooper.execute(); // Move along, move along.

System.out.println("# Death Star hangar");

Ship falcon = new Ship("Millenium Falcon"); // receiver

Command checkShipCommand = new CheckShipCommand(falcon);
stormTrooper.setCommand(checkShipCommand); // same invoker, new command
stormTrooper.execute(); // No one on board.

Same stormtrooper given different commands.

13/ 54

Stormtrooper/Invoker

public class StormTrooper {
private Command command;

public StormTrooper(Command command) {
this.command = command;
}

public void setCommand(Command command) <{
this.command = command;
+

public void execute() {
command.execute();
}

Stateful: setCommand, another call to execute.

14 / 54

Suspect/Receiver

public class Suspect {
// fields, constructors, getters

public String getId() {
return id;
}

Jedi were always in a class of their own.

public class Jedi extends Suspect {

@Override
public String getId() {
throw new RuntimeException("Jedi mind trick!");

by

15/ 54

Another Command Example

public class CheckShipCommand implements Command {
Ship ship; // receiver

public CheckShipCommand(Ship ship) {
this.ship = ship;

¥
public void execute() {
System.out.printin(
ship.getSuspects().isEmpty() ? "No one on board."
: "Found " + ship.getSuspects().size()
+ " suspects in " + ship.getName());
¥

16 / 54

Star Wars (lass Diagram

© Client

4 creates

/ \

/ Mo s
k iUnvoker:

Command| 4 © StormTrooper invoker

*
< <

O command

execute()
4 A
/ AN

N
/ N
/ N

© CheckIldCommand © CheckShipCommand

o execute()

O suspeot O spaceship

© Ship

O name String
O suspects: List<Suspect>

o getld()

17/ 54

Code as Data

The command pattern allows us to treat a block of code (and its parameters) as
data. Benefits:

Reuse methods from different controllers
Store commands in data structures

Queue commands

Create command macros, a sequence
Commands calling other commands

Test better

Log better, show command history

Easy to extend to support undo operations

We can do all this (and more!) with commands.

But there's one very special thing we can also do with commands...

19/54

Ignore Them.

Why We Chose Command

For Dataverse 4.0, a Java EE 7 app which needs to support sensitive data and a
full API, we wanted:

1. Maximal code re-use between the API and the Ul
2. By-design, permission-based security.

Dataverse C%

With some extensions and infrastructure (shown later) - we got just that.

21/54

Back on schedule

You may dispense with the pleasantries,
Commander. I'm here to put you back on schedule.

-
" - W
g
y - \
& !
- N5

W /‘ w0 | o

//

22 /54

Back to Java EE

23 /54

MVCin Java EE

Balancing clean design and practicality.

% view controller model
| JSF | Backing Bean I Service Beans | @Entity |)
user EntityManager (?)
click button >
button_clicked() >
change -
change %
< ok
persist .
‘ ok
_ ok
_ok
< OK
u; | JSF | Backing Bean | Service Beans | @Entity | EntityManager (7)

Note: We show one interpretation here - there are other interpretations as well.

24 /54

MVCin Java EE

Balancing clea

Now, how do | cram commands in here?

% view controller model
| JSF | Backing Bean I Service Beans | @Entity |)
user EntityManager (?)
click button -
button_clicked() >
change -
change %
< ok
persist >
‘ ok
_ ok
_ok
< OK
u; | JSF | Backing Bean | Service Beans | @Entity | EntityManager (7)

Note: We show one interpretation here - there are other interpretations as well.

25 /54

[feel a great disturbance
in the source.

26 /54

Nothing New Under The Sun

EJB Design Patterns: Advanced Patterns, Processes, and Idioms by Floyd

Marinescu, 2002

"Use the Command pattern to wrap business
logic in lightweight command beans that
decouple the client from EJB, execute in one
network call, and act as a facade for the EJB
layer." (p. 19)

Command vs. Session Facade + Business
Delegate

No invoker: "Applied to E]JB, the Command
Server class is a stateless session bean that
accepts a command as a parameter and
executes it locally."” (p. 22)

Struts

http://www.theserverside.com/news/1369776/Free-Book-E]B-Design-Patterns

H- IWILEY h ‘ MIDDLEWPA“HF

EJB Design
Patterns

Advanced
Patterns,
Processes,
and Idioms

Floyd Marinescu
Foreword by Ed Roman

27 | 54

Command, Adapted

We have adapted the Command Pattern to support permissions and execute in
a Java EE environment

public interface Command<R> {
public R execute(CommandContext ctxt) throws CommandException;

public Map<String,DvObject> getAffectedDvObjects();

public User getUser();

e Modern touches
o execute 1s an expression (not a statement)
o Generics
o Command objects can be (and mostly are) immutable
e The CommandContext parameter is used to allow the command access to
server resources
o No dependency injection needed — Test using standard JUnit!

Real code, comments removed. 28 / 54

Command, Adapted

We have adapted the Command Pattern to support permissions and execute in
a Java EE environment

public interface Command<R> {
public R execute(CommandContext ctxt) throws CommandException;
public Map<String,DvObject> getAffectedDvObjects();

public User getUser();

e A command acts on one or more receivers of type DvObject
o Think of these as "files" and "directories".
e A command must be issued by a User

Real code, comments removed. 29 / 54

Command, Adapted

We have adapted the Command Pattern to support permissions and execute in
a Java EE environment

public interface Command<R> {
public R execute(CommandContext ctxt) throws CommandException;
public Map<String,DvObject> getAffectedDvObjects();

public User getUser();

CommandException has 3 sub-classes:

e IllegalCommandException - Command makes no sense
o e.g. move a parent to its descendant
e PermissionException - Issuing user doesn't get to perform this operation
over the affected receivers
e CommandExecutionException - Oops, our bad

Real code, comments removed. 30 / 54

Command Invoker, Adapted

We called the invoker Engine, as the term is more familiar.

public interface DataverseEngine {

public <R> R submit(Command<R> aCommand) throws CommandException;

» Modernized invoker - replaced the set—execute—get sequence with a
single method call.
e submit is a generic method, allowing type-safe execution of any command.

Real code, comments removed. 31 / 54

Command Engine in the Wild

Creating a Dataset from the API (JAX-RS @Path bean).

@EJB
protected EjbDataverseEngine engineSvc;

Dataset ds = ... // get dataset here
Users u = ... // get the user here
try {
Dataset managedDs =
engineSvc.submit(new CreateDatasetCommand(ds, u));
return okResponse('"created dataset " + managedDs);

} catch (XXXCommandException ex) {
T
}

Code adapted for slide. Original file at: hitp

32 /54

Command Engine in the Wild #2

Same command used from a JSF backing bean.

@EJB EjbDataverseEngine commandEngine;

Command<Dataset> cmd;
try {
if (editMode == EditMode.CREATE) {

cmd = new CreateDatasetCommand(dataset, session.getUser());
} else {

cmd = new UpdateDatasetCommand(dataset, session.getUser());
+

dataset = commandEngine.submit(cmd);

} catch (CommandException ex) {

}
return "/dataset.xhtml?id=" + dataset.getId() + ...
+ "&faces-redirect=true";

Code adapted for slide. 33 / 54

Command Engine in a Wild Loop

Listing the content of a dataverse object (think 1s).

try {
for (DvObject o :
engineSvc.submit(new ListDataverseContentCommand(u, dataverse))) {
// add o to the output
}
} catch (IllegalCommandException ex) {
return errorResponse(Response.Status.FORBIDDEN, ...);

} catch (PermissionException ex) {
return errorResponse(Response.Status.UNAUTHORIZED, ...);

} catch (CommandException ex) {
logger.log(Level.SEVERE, "Error while " + messageSeed, ex);
return errorResponse(Status.INTERNAL_SERVER_ERROR, ...);

Code adapted for slide. Actual code has some extra neat stu
htipns://oj grse = in/i

ff outside the scope of this BOF. See
github com/1QSS/data /blob/m eduwhbarvard/ig/dataverse/api/AD

34 /54

Command Sequence Diagram

view command model
JSF | Backing Bean | | Engine (invoker) | | Command | | @Entity |)
user EntityManager (7)
click butto; >
button_clicked() >
new (41) >
submit(¢c d) |
execute(ctxt) >
changg
e ok
persist >
« ok
€ ok
> ok
< OK
oy JSF | Backing Bean | | Engine (invoker)] | Command | | @Entity I = oty Manager (1)

35/54

click butto:

user

view
JSF | Backing Bean | | Engine (invoker) | | Command | | @Entity |
button_clicked()
validate
new (41 >
submit(éc d) _
changg
_ok
persist oy
_ ok
ok
ok
JSF | Backing Bean | | Engine (invoker)] | Command |

EntityManager (7)

I EntityManager (?)

click butto:

JSF

Y

OK

view

command

| Backing Bean |

| Engine (invoker) | | Command |

| @Entity |

button_clicked()
el

validate
new (+§) 3
submit(¢ommand)

model

EntityManager (7)

Service beans wil be with you, always.

Y

user

JSF

e ok
persist
« ok
€ ok
> ok
| Backing Bean | | Engine (invoker) I | Command | | @Entity

I EntityManager (?)

37 /54

Sample Command: Rename a Dataverse

@RequiredPermissions(Permission.UndoableEdit)
public class RenameDataverseCommand

}

Actual code

extends AbstractCommand<Dataverse>{
private final String newName;
private final Dataverse renamed;
public RenameDataverseCommand(User aUser,
Dataverse aDataverse, String aNewName) {

super(aUser, aDataverse);

newName = aNewName;

renamed = aDataverse;

}

@Override
public Dataverse execute(CommandContext ctxt) throws CommandException {
if (newName.trim().isEmpty()) {
throw new
IllegalCommandException("Dataverse name cannot be empty", this);
¥

renamed. setName (newName) ;
return ctxt.dataverses().save(renamed);

}

38/54

Permissions and Commands

 In code, permissions live in an enum. Each permission:
o Holds a basic descriptive text.
o States which objects it applies to.
 In the database, permission live in a bit field
o Very fast, but must be kept under 64.
o No DB joins needed
» Testing if a permission exists in a permission set is a bitwise operation.

public enum Permission {
Discover("See and search content", DvObject.class),
Download("Download the file", DataFile.class),
AccessUnpublishedContent("Access unpublished content",
DvObject.class),
AccessRestrictedMetadata("Access metadata marked as\"restricted\"",
DvObject.class),
UndoableEdit("Edits that do not cause data loss", DvObject.class),
DestructiveEdit("Edits that cannot be reversed, such as deleting data",
DvObject.class),
/]«

39/54

Supporting Multiple Receivers

When commands involve more than a single receiver, the
RequiredPermissionMap annotation can be used.

@RequiredPermissionsMap ({
@RequiredPermissions(dataverseName = "moved",
value = {Permission.UndoableEdit, Permission.GrantPe
@RequiredPermissions(dataverseName = "source",
value = Permission.UndoableEdit),
@RequiredPermissions(dataverseName = "destination",
value = Permission.DestructiveEdit)
1)

public class MoveDataverseCommand extends AbstractVoidCommand {
[/ v
public MoveDataverseCommand(User aUser,
Dataverse moved, Dataverse destination) {
super (aUser, dv("moved", moved),
dv("source",moved.getOwner()),
dv("destination",destination));
this.moved = moved;
this.destination = destination;

}

40/ 54

Command Composition

A dataset has a published version, accessible by everyone, and a draft version,
accessible by the team only. We composed existing commands to get the latest
version accessible to the User issuing the Command:

@RequiredPermissions(Permission.Discover)
public class GetLatestAccessibleDatasetVersionCommand
extends AbstractCommand<DatasetVersion>
DA
@Override
public DatasetVersion execute(CommandContext ctxt) throws CommandException {
DatasetVersion d = null;

try {
d = ctxt.engine()
.submit(new GetDraftDatasetVersionCommand(u, ds));
} catch(PermissionException ex) {}

if (d == null) {
d = ctxt.engine()
.submit(new GetLatestPublishedDatasetVersionCommand(u,ds));

}

return d;

41/ 54

Fasy Testing

Since the command and the context are POJOs, we can mock them easily.

I
@Before
public void setUp() {

testEngine = new TestDataverseEngine(new TestCommandContext(){...});
YT
@Test
public void testValidMove() throws Exception {

testEngine.submit (

new MoveDataverseCommand(null, childB, childA));

assertEquals(childA, childB.getOwner());
assertEquals(Arrays.asList(root, childA), childB.getOwners());

by

@Test(expected=IllegalCommandException.class)
public void testInvalidMove() throws Exception {
testEngine.submit (
new MoveDataverseCommand(null, childA, grandchildAA));
fail();
+

42 | 54

Can we remove all service beans?

Yes

« Command context can give direct access to the entity manager, JMS
resources and the like, so commands could use them directly.
o There's just one problem...

44 | 54

Can we remove all service beans?

Yes

» Command context can give direct access to the entity manager, JMS
resources and the like, so commands could use them directly.
o There's just one problem...

It's the Wrong Question

45/ 54

Should We Remove All Service Beans?

Probably Not

We tried that. Didn't work well, since the commands became too detailed.

Current Status - a more balanced approach

Commands deal with: Operations on model objects.

Service Beans deal with: save, update, delete and various lookups of model
objects (e.g. findById).

47 [54

Should We Remove All Service Beans?

Probably Not

We tried that. Didn't work well, since the commands became too detailed.

Current Status - a more balanced approach

Commands deal with: Operations on model objects.

Service Beans deal with: save, update, delete and various lookups of model
objects (e.g. findById).

Hence, we call this:

48 | 54

Lean Bean
Design Pattern

Lean Beans (are made of this)

« Actions on models done by Command objects
« CRUD done by lean beans

Benefits

Code as data
Reuse commands from various places
Permission validation baked into the system
Commands are POJOs:

o Reusable outside of Java EE

o Testable using JUnit

= Since we use beans, which are easier to mock than
EntityManagers

Easy to find functionality - look at the class' name

50/54

Lean Beans (are made of this)

« Actions on models done by Command objects
« CRUD done by lean beans

Downside

« Some infrastructure needed
o Engine
o Permission annotations
« Requires some learning - not a mainstream solution

Also, we're just starting this - so not a lot of experience yet.

51/54

Future Work

Some issues we already found out, and will deal with soon:

As Annotations are static, required permissions can't be dynamic

This conflicts with, e.g. The Decorator pattern. We will use a static-dynamic
combo, where the basic command implementation uses reflection to return
the required permissions, but subclasses can override this behavior.

Permission pre-flight check

Current implementation requires an actual object to work on, but the database
layer allows for permission checks using the entity's id only - no real need to
retrieve the object. When it makes sense, we need to take advantage of this.
Somehow.

52 /54

Thanks

Visit the IQSS data science team at htip://datascience.ig.harvard.edu

https://github.com/IQSS/dataverse

Dataverse project @ GitHub:

Slides and sample code from this talk: http://igss.github.io/javaocne2014-
bof5619

Next up from IQSS:
Mike Heppler on JSF, PrimeFaces and Boostrap - Right here at Plaza A

e

¥ Juantiative %
& HARVARD UNIVERSITY

B4 54

