W Atlassian

Practical continuous
deployment

Who Am I?

+ Steve Smith

 An Atlassian for 8+ years

» Original company sysadmin

» Developer for last 5 years

» Now working out of Amsterdam
» Not a professional speaker

Who Am I?

» Steve Smith

 An Atlassian for 8+ years

» Original company sysadmin

» Developer for last 5 years

» Now working out of Amsterdam

e I\IN aldaldva ™ ava -
o OBEVIARY TT1T1C VAW] @

Who are you®?

* Who's in the room? Devs, ops, mgmt?

 Please ask questions (or share your
experiences), I'd like this to be a
discussion, not a lecture.

What I've been up to...

» Spent 6 months converting our order
systems to high-availability and
continuous deployment.

» Why so long? Because the concept is
straightforward, but it’s implications affect
a lot of your organisation.

‘Deployment ?
"‘Delivery ?

» Continuous integration is continuous,
automated build and test.

 Continuous delivery is the next obvious
step; be continuously release-ready.

» Continuous deployment is the final step,
the continuous delivery of software to
production.

‘Deployment ?
"‘Delivery ?

» Constant QA is the common theme.

» In practice there’s a continuous spectrum
of options, each organisation has different
needs and constraints.

- But if you trust your testing and process
you can adopt the level appropriate for
YOU.

Why Continuous
deployment?

« We want to release features, not “what
ever happens to be done”

» Automation: Releasing is hard, automation
makes It repeatable

» Remove organisational bottlenecks to
releases

Stakeholder benefits

» To customers: You'll get your requested
feature faster!

- To management: You'll get results faster
and clearer progress.

* To devs: No more death-marches, mad-
dashes, clean-up after releases.

 To admins: You know which change broke
the system!

S0 how do you actually
do 1t7

» Continuous deployment guides tend to
focus on the high-level philosophy

» But how do you actually get a feature from
a customer request to your servers?

Development worktlow

» Continuous deployment implies a clearer
development process.

» You need to know what is going out when
you release, not a dump of the current

state.
» Hence release by feature

Step 1: Track your
requests

- Each feature/update request should have
a unique ID.

» This allows tracking the state of a feature
from request to deployment.

» Bug-trackers are a good choice for this.

Step 2: Work on this
feature 1in a branch

» Create a branch for just this feature
- Name it after the feature request
- Jira/Stash integration will do this
» The branch will be merged when complete
* YOu need a sane version control system
» We use git, Mercurial is good too

Step 3: Automatically
test the branch

» Run a continuous integration tool that will
automatically run tests against the branch.

- Features may not be merged until all tests
are passing.

» Stash has some features to support this.

Step 4: Code review

» No code may be merged to the release
branch until reviewed by other members
of the team.

- Team members have a responsibility to
ensure quality.

Step 4.1: Stash testing
integration

= (@ Stash Projects Repositories ~ Q Find a repository... ® Give Feedback @~ L

d

8) % Business Platforms ™ +
Clone + =C Fork Pull Request
@ hams = = .

y 4
Files Commits Branches Pull requests (100 Settings

#7177 BED P bugfix/BIZPLAT-74171.. I maste: Merge Decline Edit @ Approve

Bugfix/BIZPLAT-74171 fix bugs related to pricing @efs ,-\o @>

Overview Diff Commits

¢) 1Build @

Details
¥ 2 JIRA Issues

& Will Rayner created a pull request 12 Feb 2014

This started as a fix for BIZPLAT-74177 but quickly evolved to solve issues caused by running vitola test &, watch this oull request
0

described in BIZPLAT-73631
(? Learn more

« Now mapping product feature usages to product features based on convention.
» Fixed issue where incorrect parent ondemand key was used.
« Now migrating eval items to pricing plans.

4]

Step 5: Merge and
release

* Once all reviews and tests are passed
them merge to release branch

» At this point we have a separate Bamboo
plan that performs a full release.

Step 6: Deploy to
staging

» Allows testing of more advanced
Interactions and against production
samples.

» More testing can occur at this point,
including testing by humans.

Step 7: Release to
production

» Valid staging builds may be promoted up
to production.

Segue: Continuous
downtime ?

» So if you’re doing all these releases, what
about uptime?

» For public-tacing service clustering/HA is
Important.

» |deally you should be able to automate
cluster configuration as part of the

deployment

[.ast mile

Practical 1ssue

- How do you actually get releases onto
your staging and production servers?

» AKA “the last-mile problem”

[L.ast mile - Puppet/Chef

» Puppet/Chef are not appropriate
- .. If timing is critical
» .. If cross-host coordination required

Last mile - DIY

» Roll your own
» Bamboo SSH plugin + bash scripting
» Number of existing automation solutions

» func, capistrano, SaltStack, Ansible,
mcollective, Fabric...

L.ast mile - Direct Agent

- Bamboo (or other) agent per-node
» SSH not required
» Works for simple (single node) apps
» Coordination is tricky

[.ast mile - Other
Agents

» Agent-based frameworks
- Powerful and flexible
 Can parallelise deployments
» Requires setup on all nodes
» |f you already have it setup then use it

[.ast mile

» SSH scripting

» Requires management of SSH keys on
agent

» Bamboo SSH plugin
» Scripting (Bash, Python, Ruby, etc.)

- Automation frameworks (Ansible,
SaltStack, Func, Fabric)

[.ast mile

* Our solution

» Ansible for automation (explicit support
for load-balancer integration)

 Minimal requirements, SSH+Python

- Bamboo pulls Ansible directly from their
source repository

» Ansible playbooks checked into git

Practical 1ssue

- How do you manage what has been
released, and to where?

» How do you control who performs
deployments?

Bamboo deployment
environments

* The release build plan can be associated
with certain environments

» Normal ones are deyv, staging (QA) and
production

Bamboo deployment
environments

= +¢iBamboo MyBamboo Buid~ Deploy~ Reports~ Create ~

Build projects / Business Platforms

HAMS Release 17 master ~ ONONOHNONONONONONONY ®» Run ~ ¥ Actions ~ N .

HAMS Release release

Plan summary Branches Recentfailures History Tests Issues Deployments (1

Related deployments

Deployment for HAMS ¢

Environment Status Release Release branch Build result Completed Trigger Actions
used
HAMS Dev Sandbox [[ZX¥=) Details 3.258 U master © #135 30 January 2014 Child of BIZPLAT- I 4
06:10 AM HAMSREL-135
HAMS Staging DEPLOYED v3.248 ! master @ #135 30 January 2014 Manual run by Andres e &
Cluster APPROVED 06:21 AM Sanz
HAMS Production DEPLOYED v3.241 U master @ #116 28 January 2014 Manual run by Steve Ny

Cluster APPROVED 07:53 AM Smith

Bamboo deployment
environments

» Environment has tasks, like a build plan
» Tasks perform the actual deployment

- Environments have permissions, limiting
who may perform deployments

» Generates releases, which are deployed
* Has some nice integrations...

Bamboo deployment
release

Deployment status v3.248 details
Environment Status Deployment Completed Trigger Actions Created
result 9 hours ago
HAMS Dev Never now at Ny Created by
Sandbox deployed 3.258 RSl Andres Sanz
HAMS Staging 30 January 2014 Manual run by h2 Reviewed
Cluster 06:21 AM Andres Sanz ﬁ
HAMS Production Never now at hJ Deployment project
Cluster deployed v3.241 Deployment for HAMS

Artifacts provided by

. #135 Business Platforms » HAMS
Commits tested by 9

Release
The commits that were used to produce this release, were also built in the following build results Release contents
. Server Properties
Build Plan Test results Server War
© #161 Business Platforms » HAMS 2667 passed
® #135 Business Platforms » HAMS Release No tests found
&) Business Platforms » HAMS Remote Tests 49 passed
#1479

@ #170 Business Platforms » HAMS Sonar 2202 passed

Bamboo deploymen
JIRA integration

Issue deployment details

Bamboo releases with related commits
Deployment project Deployment for HAMS

Releases with commits 3.258

Issue availability across environments

Environment Issue availability Current release

HAMS Dev Sandbox (D 3.258

HAMS Staging Cluster v3.248

HAMS Production Cluster NOT DEPLOYED v3.241

Procedural 1ssues

* Where’s the oversight in all this?

- What about SoX, PCI, SEC requirements?
» Who is allowed to do releases?

» Who signs off?

Procedural 1ssues

 Our solution - separate the infrastructure

e Dedicated Bamboo server for business
software

» Dedicated agents for building

» Separate, dedicated agents for
deployment

Procedural 1ssues

» Access controls
» Build team/admins control the server
» Business analysts define features
» Devs code, review, merge and release
» Features pushed to staging for BA review
» BAs can promote releases to production

Questions?

W Atlassian

Steve Smith

(@tarkasteve
ssmith@atlassian.com

http:// www.slideshare.net/tarkasteve

mailto:ssmith@atlassian.com
http://www.slideshare.net/tarkasteve/

