
Practical continuous 
deployment



• Steve Smith!
• An Atlassian for 8+ years!
• Original company sysadmin!
• Developer for last 5 years!
• Now working out of Amsterdam!
• Not a professional speaker

Who Am I?



• Steve Smith!
• An Atlassian for 8+ years!
• Original company sysadmin!
• Developer for last 5 years!
• Now working out of Amsterdam!
• Not a professional speaker

Who Am I?



• Who’s in the room? Devs, ops, mgmt?!
• Please ask questions (or share your 

experiences), I’d like this to be a 
discussion, not a lecture.

Who are you?



• Spent 6 months converting our order 
systems to high-availability and 
continuous deployment.!

• Why so long? Because the concept is 
straightforward, but it’s implications affect 
a lot of your organisation.

What I’ve been up to…



• Continuous integration is continuous, 
automated build and test.!

• Continuous delivery is the next obvious 
step; be continuously release-ready.!

• Continuous deployment is the final step, 
the continuous delivery of software to 
production.

“Deployment”? 
“Delivery”?



• Constant QA is the common theme.!
• In practice there’s a continuous spectrum 

of options, each organisation has different 
needs and constraints.!

• But if you trust your testing and process 
you can adopt the level appropriate for 
you.

“Deployment”? 
“Delivery”?



• We want to release features, not “what 
ever happens to be done”!

• Automation: Releasing is hard, automation 
makes it repeatable!

• Remove organisational bottlenecks to 
releases

Why Continuous 
deployment?



• To customers: You’ll get your requested 
feature faster!!

• To management: You’ll get results faster 
and clearer progress.!

• To devs: No more death-marches, mad-
dashes, clean-up after releases.!

• To admins: You know which change broke 
the system!

Stakeholder benefits



• Continuous deployment guides tend to 
focus on the high-level philosophy!

• But how do you actually get a feature from 
a customer request to your servers?

So how do you actually 
do it?



• Continuous deployment implies a clearer 
development process.!

• You need to know what is going out when 
you release, not a dump of the current 
state.!

• Hence release by feature

Development workflow



• Each feature/update request should have 
a unique ID.!

• This allows tracking the state of a feature 
from request to deployment.!

• Bug-trackers are a good choice for this.

Step 1: Track your 
requests



• Create a branch for just this feature!
• Name it after the feature request!
• Jira/Stash integration will do this!

• The branch will be merged when complete!
• You need a sane version control system!
• We use git, Mercurial is good too

Step 2: Work on this 
feature in a branch



• Run a continuous integration tool that will 
automatically run tests against the branch.!

• Features may not be merged until all tests 
are passing.!
• Stash has some features to support this.

Step 3: Automatically 
test the branch



• No code may be merged to the release 
branch until reviewed by other members 
of the team.!

• Team members have a responsibility to 
ensure quality.

Step 4: Code review



Step 4.1: Stash testing 
integration



• Once all reviews and tests are passed 
them merge to release branch!

• At this point we have a separate Bamboo 
plan that performs a full release.

Step 5: Merge and 
release



• Allows testing of more advanced 
interactions and against production 
samples.!

• More testing can occur at this point, 
including testing by humans.

Step 6: Deploy to 
staging



• Valid staging builds may be promoted up 
to production.

Step 7: Release to 
production



• So if you’re doing all these releases, what 
about uptime?!

• For public-facing service clustering/HA is 
important.!

• Ideally you should be able to automate 
cluster configuration as part of the 
deployment

Segue: “Continuous 
downtime”?



Last mile



• How do you actually get releases onto 
your staging and production servers?!
• AKA “the last-mile problem”

Practical issue



• Puppet/Chef are not appropriate!
• .. if timing is critical!
• .. if cross-host coordination required

Last mile - Puppet/Chef



• Roll your own!
• Bamboo SSH plugin + bash scripting!

• Number of existing automation solutions!
• func, capistrano, SaltStack, Ansible, 

mcollective, Fabric…

Last mile - DIY



• Bamboo (or other) agent per-node!
• SSH not required!
• Works for simple (single node) apps!
• Coordination is tricky

Last mile - Direct Agent



• Agent-based frameworks!
• Powerful and flexible!
• Can parallelise deployments!
• Requires setup on all nodes!
• If you already have it setup then use it

Last mile - Other 
Agents



• SSH scripting!
• Requires management of SSH keys on 

agent!
• Bamboo SSH plugin!
• Scripting (Bash, Python, Ruby, etc.)!
• Automation frameworks (Ansible, 

SaltStack, Func, Fabric)

Last mile



• Our solution!
• Ansible for automation (explicit support 

for load-balancer integration)!
• Minimal requirements, SSH+Python!
• Bamboo pulls Ansible directly from their 

source repository!
• Ansible playbooks checked into git

Last mile



• How do you manage what has been 
released, and to where?!

• How do you control who performs 
deployments?

Practical issue



• The release build plan can be associated 
with certain environments!

• Normal ones are dev, staging (QA) and 
production

Bamboo deployment 
environments



Bamboo deployment 
environments



• Environment has tasks, like a build plan!
• Tasks perform the actual deployment!
• Environments have permissions, limiting 

who may perform deployments!
• Generates releases, which are deployed!
• Has some nice integrations…

Bamboo deployment 
environments



Bamboo deployment 
release



Bamboo deployment 
JIRA integration



• Where’s the oversight in all this?!
• What about SoX, PCI, SEC requirements?!
• Who is allowed to do releases?!
• Who signs off?

Procedural issues



• Our solution - separate the infrastructure!
• Dedicated Bamboo server for business 

software!
• Dedicated agents for building!
• Separate, dedicated agents for 

deployment

Procedural issues



• Access controls!
• Build team/admins control the server!
• Business analysts define features!
• Devs code, review, merge and release!
• Features pushed to staging for BA review!
• BAs can promote releases to production

Procedural issues



Questions?



Steve Smith 
@tarkasteve 

ssmith@atlassian.com 

http://www.slideshare.net/tarkasteve/

mailto:ssmith@atlassian.com
http://www.slideshare.net/tarkasteve/

