
10 reasons why Java now
rocks more than ever

Geert Bevin - XRebel Product Manager

Who am I?

> Geert Bevin

> XRebel Product Manager at ZeroTurnaround

> Java Champion

> Creator of RIFE framework, pioneering native Java continuations

> Many other open-source projects

My previous three years

Software for Eigenharp
instruments

Away from Java

> Cross-platform real-time audio software

> Massive throughput, minimal and constant latency

> C++ (with Juce library) and CPython

> Designed for musical performance and total customization

Frustrating development

> Started missing Java more and more

> Constantly stumbled into things I had taken for granted

> So here are ...

10 features we take for granted,
making Java rock more than ever

#1 The Java Compiler

☺ The Java Compiler

> Compiles to bytecode, allowing for JIT at runtime

> Very few compiler-specific semantics to understand

> Everything is dynamically linked and loaded

> Useful error messages

☹ Straight to native compilation

> Native platform bleeds through in your high-level code

> Decide optimization levels up-front with aggressive levels
potentially causing problems

> Distribution and maintenance of different platform binaries

☹ C++ error message example

- pic::lckvector_t<piw::data_nb_t>::nbtype last_audio_;!
+ pic::lckvector_t<piw::data_t>::nbtype last_audio_;

tmp/obj/eigend-gpl/piw/src/piw_gain.os (g++-4.2)!
eigend-gpl/piw/src/piw_gain.cpp:In member function ‘long long unsigned
int<unnamed>::gainbase_t::input_audio(unsigned int, const piw::data_nb_t&)’:!
eigend-gpl/piw/src/piw_gain.cpp:51:error: no match for ‘operator=’ in
‘((<unnamed>::gainbase_t*)this)-><unnamed>::gainbase_t::last_audio_.
std::vector<_Tp, _Alloc>::operator[] [with _Tp = piw::data_t, _Alloc =
pic::stlnballocator_t<piw::data_t>](((long unsigned int)index)) = d’!
eigend-gpl/piw/piw_data.h:247:note: candidates are: piw::data_t&
piw::data_t::operator=(const piw::data_t&)

☹ G++ != Clang != ICC != VSCC

> Each compiler on each platform compiles differently

> Each compiler has different features, capabilities and arguments

> Hundreds of options to wade through, requiring sometimes very
low-level knowledge of the hardware

☹ Linking and libraries

> Native linking is slow, especially when link-time optimization is
enabled

> Constant trade-off between dynamic libraries and static libraries

> DLL version management

> DLL visibility management (symbols export and import)

#2 The Core API

☺ The Core Java SDK

> Official SDK is very complete and sufficient for writing apps

> Used consistently throughout Java projects, people don’t avoid it

> Even when wrapped, it’s still underneath other libraries

> Free to use and deploy with a liberal license

> Drive towards standardization on the platform, not just language

> Stand on shoulders of everyone, vibrant open-source community

☹ Others have limited core SDK

> C++ has the STL but it’s very limited and not sufficient

> Mixing libraries without foundation turns into a nightmare

> Typical projects have 3 different String classes, sometimes more

> Different handling of endianness, encodings, threading, …

> Relying on existing solutions often pulls in additional platforms

> Python’s SDK is more complete, documentation is lacking

#3 Open-Source

☺ Open-Source

> Pervasive open-source mindset with vibrant communities

> Spirit of collaboration and curiousness

> Genuinely useful and active open-source projects

> Everything about Java as a platform and language is open

> Many professional open-source companies

> Massive collection of working code examples

☹ Islands and fragmentation
> Lack of core API splits open-source efforts into isolated silos

> Open-source is mostly academic or lone individuals

> Expected music software world to be all about sharing, total
opposite

> Slightest piece of functionality is closely guarded in secrecy

> Stuck into standards from 1980, nobody works together to
innovate

#4 The Java Memory Model

☺ The Java Memory Model

> Bullet-proof specification of multi-threading interactions

> Low-level JSR-133 set of ‘happens-before’ rules

> Predictable visibility across threads

> Predictable ordering across threads

> Allows for higher level concurrency constructs like actors

> 1st platform to provide this, perfected and stabilized over years

☹ Concurrency is afterthought
> Taken until 2011 for C/C++ to standardize memory model

> Threads are difficult, imagine using and combining different
implementations

> Python has GIL, threads can’t concurrently access state

> Some advocate resorting even to multi processes, what about
state there?

> On your own when using other concurrency constructs

#5 High-Performance VM

☺ High-Performance VM

> Built-in garbage collection that is under constant improvement

> Truly multi-platform and actively supported on each OS

> Very tunable with startup options

> Out-of-the-box runtime monitoring and management

> Runs on everything from embedded devices to super-servers

> Standard JMX spec available for managing non-VM resources

☹ Manual memory management

> High-throughput & high-performance needs manual heap pools

> No visibility, profiling, monitoring

> Code is dictated by how memory is managed: RAII, smart
pointers, reference counting, ownership transfer

> Now imagine managing memory across C++ and CPython

> Without a stable memory model!

☹Work for target architecture

> Different tests for each architecture

> Different build process for each architecture

> Different compiler and language variant for each architecture

> Different build tools for each architecture

> Different packaging and installing for each architecture

> Different development tools on each architecture

#6 Bytecode

Java

public class HelloWorld {
 public HelloWorld() {
 }

 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

javap -p -c HelloWorld

public class HelloWorld {
 public HelloWorld();
 Code:
 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #3 // String Hello World!
 5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
}

Bytecode

> Understandable for Java developers

> Offers indispensable genuine ‘glue’ for different languages and
tools

> Can be generated and modified at runtime

> Enabled alternative languages and frameworks

> Inspectable through JDK tools and IDEs

Bytecode changed Java
> FindBugs for static code analysis

> Groovy, Scala, Clojure generate bytecode from different source

> ORM tools instrument your code for database operations

> DI frameworks seamlessly weave application lifecycle together

> Augment Java by modifying classes that javac generated

> JRebel instruments for instant reloads

> XRebel instruments to find performance problems

Your imagination is the limit

> Write your own compiler for a language you come up with

> Write a static transformer that pre-processes existing classes

> Write an instrumentation agent that plugs right into the JVM and
performs bytecode manipulation on-the-fly

> Write custom classloaders but that’s nowadays strongly
discouraged

#7 Intelligent IDEs

Intelligent IDEs

> Project-wide understanding of the Abstract Syntax Tree

> Refactor with confidence

> On-the-fly error highlighting

> Local and remote debugging with great visibility

> Native support for most frameworks, languages and libraries

> Integration with run-time platforms

#8 Profiling Tools

Profiling Tools

> Profiling tools used during production and attached dynamically

> CPU, threading, memory, exception, GC, ... profiling

> Snapshotting with deep inspection and offline analysis

> IDE integration

> Heap dump facility built into JVM and available to anyone

> All the tools your need to perform root cause analysis

#9 Backwards Compatibility

Backwards Compatibility

> Applications from more than a decade ago are still supported

> Leverage modern JVM improvements

> Drop-in replacement of new JVMs with existing applications

> Older source code still compiles even though the Java language
evolved

> Standing on each-other’s shoulders for 18 years!

Forwards Compatibility
> Current applications will continue to run on newer JVMs

> Reap benefits of hardware improvements without knowing low-
level semantics

> Shield yourself from platform obsolescence

> Examples: garbage collector, management and monitoring, real-
time profiling, HotSpot adaptive optimization, escape analysis
for lock elision, lock coarsening, class data sharing, …

Sideways Compatibility

> Comfort to change your environment to different OSs

> You can rely on your own software components even if the
entire industry jumped ship

> Your current investments will remain useful for decades

#10 Maturity With Innovation

Maturity With Innovation
> Platform is very mature and used for mission-critical operations

> Maturity allows for teamwork

> Language and VM are under steady research and innovation

> Great balance between steady pace to allow adoption and
introduction of new features

> J8: lambdas, default methods, streams, compact profiles, type
annotations, G1 garbage collector, Nashorn, JavaFX, ...

The most well-balanced compromise
between writing productivity, reading

intuitiveness, execution
performance, project maintainability,

technology evolution, application
stability and runtime visibility

The most well-balanced compromise
between writing productivity, reading

intuitiveness, execution
performance, project maintainability,

technology evolution, application
stability and runtime visibility

Read further at 

http://zeroturnaround.com/rebellabs

http://zeroturnaround.com/rebellabs

