10 reasons why Java now
rocks more than ever

Geert Bevin - XRebel Product Manager

() ZEROTURNAROUND

Who am I?

Geert Bevin

XRebel Product Manager at ZeroTurnaround

Java Champion

Creator of RIFE framework, pioneering native Java continuations

Many other open-source projects

My previous three years

Software for Eigenharp
iInstruments

Away from Java

Cross-platform real-time audio software

Massive throughput, minimal and constant latency

C++ (with Juce library) and CPython

Designed for musical performance and total customization

Frustrating development

Started missing Java more and more
Constantly stumbled into things | had taken for granted

So here are ...

10 features we take for granted,
making Java rock more than ever

#1 The Java Compiler

@ The Java Compiler

Compiles to bytecode, allowing for JIT at runtime
Very few compiler-specific semantics to understand
Everything is dynamically linked and loaded

Useful error messages

@ Straight to native compilation

Native platform bleeds through in your high-level code

Decide optimization levels up-front with aggressive levels
potentially causing problems

Distribution and maintenance of different platform binaries

C++ error message example

- pic::lckvector t<piw::data nb t>::nbtype last audio_;
+ pic::lckvector t<piw::data t>::nbtype last audio ;

tmp/obj/eigend-gpl/piw/src/piw gain.os (g++-4.2)

eigend-gpl/piw/src/piw gain.cpp:In member function ‘long long unsigned
int<unnamed>::gainbase t::input audio(unsigned int, const piw::data nb t&)’':
eigend-gpl/piw/src/piw gain.cpp:5l:error: no match for ‘operator=’ in

‘((<unnamed>::gainbase t*)this)-><unnamed>::gainbase t::last audio .
std::vector< Tp, Alloc>::operator[] [with Tp = piw::data t, Alloc =
pic::stlnballocator t<piw::data t>](((long unsigned int)index)) = d’
eigend-gpl/piw/piw data.h:247:note: candidates are: piw::data t&

piw: :data t::operator=(const piw::data t&)

(X G++!'=Clang'=1CC '= VSCC

Each compiler on each platform compiles differently
Each compiler has different features, capabilities and arguments

Hundreds of options to wade through, requiring sometimes very
low-level knowledge of the hardware

@ Linking and libraries

Native linking is slow, especially when link-time optimization is
enabled

Constant trade-off between dynamic libraries and static libraries
DLL version management

DLL visibility management (symbols export and import)

#2 The Core API

@ The Core Java SDK

Official SDK is very complete and sufficient for writing apps

Used consistently throughout Java projects, people don't avoid it
Even when wrapped, it's still underneath other libraries

Free to use and deploy with a liberal license

Drive towards standardization on the platform, not just language

Stand on shoulders of everyone, vibrant open-source community

@ Others have limited core SDK

C++ has the STL but it's very limited and not sufficient

Mixing libraries without foundation turns into a nightmare
Typical projects have 3 different String classes, sometimes more
Different handling of endianness, encodings, threading, ...
Relying on existing solutions often pulls in additional platforms

Python's SDK is more complete, documentation is lacking

#3 Open-Source

@ Open-Source

Pervasive open-source mindset with vibrant communities
Spirit of collaboration and curiousness

Genuinely useful and active open-source projects
Everything about Java as a platform and language is open
Many professional open-source companies

Massive collection of working code examples

@ Islands and fragmentation

Lack of core API splits open-source efforts into isolated silos
Open-source is mostly academic or lone individuals

Expected music software world to be all about sharing, total
opposite

Slightest piece of functionality is closely guarded in secrecy

Stuck into standards from 1980, nobody works together to
Innovate

#4 The Java Memory Model

@ The Java Memory Model

Bullet-proof specification of multi-threading interactions
Low-level J]SR-133 set of ‘happens-before’ rules
Predictable visibility across threads

Predictable ordering across threads

Allows for higher level concurrency constructs like actors

1st platform to provide this, perfected and stabilized over years

@ Concurrency is afterthought

Taken until 2011 for C/C++ to standardize memory model

Threads are difficult, imagine using and combining different
implementations

Python has GIL, threads can’t concurrently access state

Some advocate resorting even to multi processes, what about
state there?

On your own when using other concurrency constructs

#5 High-Performance VM

@ High-Performance VM

Built-in garbage collection that is under constant improvement
Truly multi-platform and actively supported on each OS

Very tunable with startup options

Out-of-the-box runtime monitoring and management

Runs on everything from embedded devices to super-servers

Standard JMX spec available for managing non-VM resources

@ Manual memory management

High-throughput & high-performance needs manual heap pools
No visibility, profiling, monitoring

Code is dictated by how memory is managed: RAIl, smart
pointers, reference counting, ownership transfer

Now imagine managing memory across C++ and CPython

Without a stable memory model!

® Work for target architecture

Different tests for each architecture

Different build process for each architecture

Different compiler and language variant for each architecture
Different build tools for each architecture

Different packaging and installing for each architecture

Different development tools on each architecture

#6 Bytecode

java

public class HelloWorld {
public HelloWorld() {
I3

public static void main(String[] args) {
System.out.println("Hello World!");
I3
I3

javap -p -c HelloWorid

public class HelloWorld A{
public HelloWorld();
Code:
0: aload 0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return

public static void main(java.lang.Stringl[]);

Code:
0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3 // String Hello World!
5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return

Bytecode

Understandable for Java developers

Offers indispensable genuine ‘glue’ for different languages and
tools

Can be generated and modified at runtime
Enabled alternative languages and frameworks

Inspectable through JDK tools and IDEs

Bytecode changed Java

FindBugs for static code analysis

Groovy, Scala, Clojure generate bytecode from different source
ORM tools instrument your code for database operations

DI frameworks seamlessly weave application lifecycle together
Augment Java by moditying classes that javac generated
JRebel instruments for instant reloads

XRebel instruments to find performance problems

Your imagination is the limit

Write your own compiler for a language you come up with
Write a static transformer that pre-processes existing classes

Write an instrumentation agent that plugs right into the JVM and
performs bytecode manipulation on-the-fly

Write custom classloaders but that's nowadays strongly
discouraged

#7 Intelligent IDEs

Intelligent IDEs

Project-wide understanding of the Abstract Syntax Tree
Refactor with confidence

On-the-fly error highlighting

Local and remote debugging with great visibility

Native support for most frameworks, languages and libraries

Integration with run-time platforms

#8 Profiling Tools

Profiling Tools

Profiling tools used during production and attached dynamically
CPU, threading, memory, exception, GC, ... profiling
Snapshotting with deep inspection and offline analysis

IDE integration
Heap dump facility built into JVM and available to anyone

All the tools your need to perform root cause analysis

#9 Backwards Compatibility

Backwards Compatibility

Applications from more than a decade ago are still supported
Leverage modern JVM improvements
Drop-in replacement of new JVMs with existing applications

Older source code still compiles even though the Java language
evolved

Standing on each-other’s shoulders for 18 years!

Forwards Compatibility

Current applications will continue to run on newer JVMs

Reap benefits of hardware improvements without knowing low-
level semantics

Shield yourself from platform obsolescence

Examples: garbage collector, management and monitoring, real-
time profiling, HotSpot adaptive optimization, escape analysis
for lock elision, lock coarsening, class data sharing, ...

Sideways Compatibility

Comfort to change your environment to different OSs

You can rely on your own software components even if the
entire industry jumped ship

Your current investments will remain useful for decades

#10 Maturity With Innovation

Maturity With Innovation

Platform is very mature and used for mission-critical operations
Maturity allows for teamwork
Language and VM are under steady research and innovation

Great balance between steady pace to allow adoption and
introduction of new features

J8: lambdas, default methods, streams, compact profiles, type
annotations, G1 garbage collector, Nashorn, JavaFX, ...

The most well-balanced compromise
between writing productivity, reading
Intuitiveness, execution
performance, project maintainability,
technology evolution, application
stability and runtime visibility

productivity
intuitiveness
performance

maintainability
evolution
stability visibility

Read further at

http://zeroturnaround.com/rebellabs

() ZEROTURNAROUND

http://zeroturnaround.com/rebellabs

