Edson Yanaga
@yanaga
APPLIED DDD IN A JAVA EE 7 AND

OPEN SOURCE WORLD
#JAVAONE

DSON YANAGA

Computer Science Bachelor’s Degree
Electrical Engineer Master's Degree
Java Developers since 1997

Unix Systems Administrator since 1999

Professor ot graduate and undergraduate courses
since 2000

ERTIFICATIONS

Oracle Certitied Protessional, Java Platform, Enterprise Edition 6
Enterprise JavaBeans Developer

Sun Certitied Enterprise Architect for the Java
Platform,Enterprise Edition 5 (i)

Certitied ScrumMaster

Sun Certified Developer tor Java Web Services 5

Sun Certified Specialist for NetBeans IDE

Sun Certified Web Component Developer tor J2EE 1.4

Sun Certitied Programmer for Java 2 Platform 1.4

SOFTWARE IS A CRAFT

’

h!.

S
B ‘

»

=3

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

1valsa1nteract10ns over processes and tools
61’kg' SOfthe hover comprehenswe documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there is value in the items on
the right, we value the items on the left more.

e

> " H C}//f\m//?/(Jor a/}/wm %)'(1/5’(3//{(//1()’/1/) =

Raising the bar.

As aspiring Software Craftsmen we are raising the bar of
professional software development by practicing it and helping
others learn the craft. Through this work we have come to value:

Not only working software,
but also well-crafted software

Not only responding to change,
but also steadily adding value

Not only individuals and interactions,
but also a community of professionals

Not only customer collaboration,
but also productive partnerships

That is, in pursuit of the items on the left we have found the items
on the right to be indispensable.

WHAT HAVE YOU LEARNED
ABOUT OBJECT ORIENTED
ANALYSIS & DESIGN?

Inheritance

Polymorphism

Encapsulation

Encapsulation

Polymorphism

Inheritance

[

access with REPOSITORIES
SERVICES

’,——

access with

maintain integrity with
ENTITIES e

express model with e

act as root ot
express model WIth
/ | AGGREGATES
/ express model with
/" MODEL-DRIVEN \ — VALUE OBJECTS

l encapsulate W|th

QSIGN
- \ encapsulate with

isolate domain with

K N—

mutually exclusive]
choices LAYERED encapsulate with
ARCHITECTURE LI

SMART Ul

encapsulate with

FACTORIES

public class Person {
private String name;

private String ssn;

private String telephone;

private Date birth;

o

Edit

or:

Martin

Fowler

ThoughtWorks

fowler@acm.org

When to Make a Type

Martin Fowler

hen I started programming com-
puters, | began with fairly primitive
languages, such as Fortran 4 and
various carly flavors of Basic. One
of the first things you learn using
such languages—indeed, even us-

ing more up-to-date languages—is which

types your language supports. Being oriented

toward number crunching, Fortran supported
integer and real types, with the in-
teresting rule that any variable
whose name started with the let-
ters | through N was an integer,
and all other variables were floats.
I’'m glad that convention hasn’t
caught on, although Perl is close.
Furthermore, using object-ori-
ented languages, you can define
your own types and in the best
languages, they act just as well as
built-in ones.

My favorite example is money. A lot of
computer horsepower is dedicated to manipu-
lating money, accounting, billing, trading, and
so forth—few things burn more cycles. Despite
all this attention, no mainstream language has
a built-in type for money. Such a type could re-
duce errors by being currency aware, helping
us, for example, avoid embarrassing moments
of adding our dollars to our yen. It can also
avoid more insidious rounding errors. It
would not only remove the temptation to use
floats for money (never, ever do that) but also
help us deal with tricky problems such as how
to split $10 equally between three people. In
addition, it could simplify a lot of printing and
parsing code. For more on this (why write the
column if | can’t plug my books?), see Patterns
of Enterprise Application Architecture (Addi-
son-Wesley, 2002).

The nice thing about OO programs is
that you can easily define a type like this if

public class Person {
private Name name;
private Ssh ssn;

private Telephone telephone;

private Birth birth;

e

7

TELL, DON'T ASK

DOCTOR?

HAVE YOU EVER HEARD OF A
INullPointerException!?

RECENTLY IN THE OPERATING ROOM

"Don't talk to strangers”

-DEMETER LAW

“g
ﬁ Mario Fusco Follow

Mutabillity Is the new goto

221 47

QUERY S
SsL %

CriteriaQuery query = builder.createQuery();
Root<Person> men = query.from(Person.class);
Root<Person> women = query.from(Person.class);
Predicate menRestriction = builder.and(
builder.equal(men.get(Person .gender), Gender.MALE),
builder.equal(men.get(Person .relationshipStatus),
RelationshipStatus.SINGLE));
Predicate womenRestriction = builder.and(
builder.equal(women.get(Person .gender), Gender.FEMALE),
builder.equal(women.get(Person .relationshipStatus),
RelationshipStatus.SINGLE));
query.where(builder.and(menRestriction, womenRestriction));

JPAQuery query = new JPAQuery(em);

QPerson men = new QPerson('men');

QPerson women = new QPerson('women') ;

query.from(men, women).where(
men.gender.eq(Gender.MALE),
men.relationshipStatus.eqg(RelationshipStatus.SINGLE),
women.gender.eq(Gender .FEMALE),
women.relationshipStatus.eg(RelationshipStatus.SINGLE));

HETEGETEISLOTATEL

This is
everybody's
fault but
mine.

HOMER SIMPSON

DON'T CARE?

THEN DO IT
-OR YOU!

It you think you can do a thing
or think you can't do a thing,
you're right.

—HENRY FORD

-

BETTHRER WO

SOURCE CODE AVAILABLE ON:
https://github.com/yanaga/ddd-javaee/

https://github.com/yanaga/ddd-javaee7

EDSON YANAGA

edson@yanaga.com.br

@yanaga
WWW.yanaga.com.br

mailto:edson@yanaga.com.br
http://www.yanaga.com.br

