
JavaFX on Android	

!

Johan Vos	

johan@lodgon.com	

@johanvos	

JavaOne 2014, [CON 1804]	

!
!

mailto:johan@lodgon.com

Why JavaFX?

• Write your JavaFX Application once, deploy it on as
many platforms as possible, reaching a larger audience. 	

• Cost-efficient: one platform for creating apps on
desktop, iOS and Android.	

• By design, JavaFX is a powerful, modern framework,
with input from a number of other UI frameworks.	

• JavaFX is Open Source. The development is done in the
open.

Why on Android?

• Mobile devices are now more popular than desktop/
laptops	

• On mobile devices, apps usage outnumbers mobile
browser usage	

• Mobile apps are changing the IT industry	

• Apps on mobile devices = {iOS, Android, …}	

• Clients provide the access point to back-end servers,

where Java is leading the pace. A business model on the
back-end benefits from a client strategy

History

• OpenJFX contains code for iOS and Android	

• No official Oracle release	

• Community stepped in and helped	

• JavaFX 8u20 almost same source code on desktop and

Android	

• We just started	

• Thanks to Tomas Brandalik and Stefan Fuchs and the

OpenJFX Team

Demo

Internals

• Runs on top of Dalvik	

• JavaFX native code is cross-compiled to ARM	

• JavaFX Java code runs on Dalvik	

• A compat.jar library is added since the JavaFX Java
code requires more than what Dalvik provides	

• Launcher and interaction classes are in jfxdvk.jar	

• Build tools are provided to bundle your application and
the Dalvik SDK together

Internals

• Download dalvik-sdk-8u20 from https://bitbucket.org/
javafxports/android/downloads	

• Structure dalvik-sdk directory: 	

• rt/lib/ext: jar files	

• rt/lib/armeabi: native libraries	

• android-tools and samples: build scripts and tools

Build tools

• gradle-ant based	

• complicated	

• working on it	

• samples directory shows how to do it	

• 3 steps:	

• create your JavaFX Application	

• use a gradle script to create an Android project based

on your JavaFX Application	

• compile the created Android project into an Android

package

Your JavaFX Application

• A regular JavaFX Application	

• use Java 7 APIs	

• no support for Java 8 APIs except for Lambdas	

• make sure a jar file is created, and the required

dependencies are in the jar file or in the same
directory as the jar file	

• gradle handles this very well

Demo

HelloWorld

Create Android Project

• We need	

• location to Android SDK (download)	

• location to JavaFX-Android SDK

(download)	

• location to our JavaFX application	

• Gradle script will create an Android
project based on our values

Demo

Step 3: Create Android APK

• the gradle-script created a directory with an ant
build file, and it refers to additional files in the
JavaFX-Android SDK.	

• a debug/release version of the package will be
created using	

• ant clean debug	

• ant clean release	

• transfer this to your device using 	

adb install

Demo

WheresDuke

• OpenMapFX: open-source project with JavaFX based map
components.
• http://bitbucket.org/lodgon/openmapfx
• see Java Magazine

• Desktop version
• Leapmotion controlled version
• Android version

• now branded WheresDuke
• beta-version in PlayStore
• if you want access, let me know at johan@lodgon.com
• layout work is ongoing

http://bitbucket.org/lodgon/openmapfx
mailto:johan@lodgon.com

Demo

WheresDuke

• More than HelloWorld	

• Uses many JavaFX 8 features	

• WebView	

• Controls, Containers	

• CSS styling	

• DataFX for communication with GlassFish back-end	

• DataFX supports OAuth

Integration with Android services

• In a JavaFX Android Application, you can leverage Android
AND JavaFX services/APIs	

• Be careful and consistent	

• No Location API in Java SE 8 or JavaFX 8	

• LocationService and other services are accessible via the

Android Context 
 
Context ctx = FXActivity.getInstance();  
Object systemService =
ctx.getSystemService(FXActivity.LOCATION_SERVICE);

Integrating Android services in  
projects

• Write Once, Run Anywhere	

• ServiceLoader approach:	

• define an interface	

• desktop and android packages each have their own

implementation of the interface	

• META-INF/services directory contains the link to

the implementation class	

• bundle either the desktop or the android package at

runtime	

The Project

• bitbucket repositories: bitbucket.org/javafxports	

• website: javafxports.org	

• mail discussions: https://groups.google.com/forum/#!forum/

javafxandroid	

• open-source, community maintained initiative that is

very well aligned with OpenJFX	

• commercial support available, e.g.  

http://www.lodgon.com/dali/page/JavaFX_Mobile_Consulting	

• johan@lodgon.com	

• @johanvos 	

!

http://bitbucket.org/javafxports
http://javafxports.org
https://groups.google.com/forum/#!forum/javafxandroid
http://www.lodgon.com/dali/page/JavaFX_Mobile_Consulting

