
Turn Your XML into Binary
Make It Smaller and Faster

JavaOne 2014

by
John Davies | CTO

@JTDavies

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Feel free to ask questions during the talk	

!

• We’ll also have time during the demos	

!

• Please tweet questions or comments to me @jtdavies	

!
!

• My question for you…	

!

• How much memory do you need to store this String?	

!

• “John”

Please ask questions

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Java is very inefficient at storing data in memory	

!

• It was designed specifically to abstract the hardware	

• Why should you need to know, write once - run anywhere!	

!

• Take the string “ABC”, typically it needs just 4 bytes	

• Three if you know the length won’t change	

• Even less if “ABC” is an enumeration	

!

• Java takes 48 bytes to store “ABC” as 
a String	

• You could argue that we don’t need to run down the entire length of the

String to execute length() but it’s a big price to pay

Java IS the problem!

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• If it was just String then we could use byte[] or char[] but Java
bloating is endemic	

• Double	

• BigDecimal	

• Date	

• ArrayList	

!

• Use just one or two and we’re OK but write a class with a few of
these and we really start to see the problem	

!

• A class with 10 minimum sized Objects can be over 500 bytes in
size - for each instance	

• What’s worse is that each object requires 11 separate memory allocations	

• All of which need managing	

• Which is why we have the garbage collector(s)

It’s not just String

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Simple data we’re going to be referring to for the next few
slides…

Start Simple…

ID TradeDate BuySell Currency1 Amount1 Exchange
Rate Currency2 Amount2 Settlement

Date
1 21/07/2014 Buy EUR 50,000,000 1.344 USD 67,200,000.00 28/07/2014

2 21/07/2014 Sell USD 35,000,000 0.7441 EUR 26,043,500.00 20/08/2014

3 22/07/2014 Buy GBP 7,000,000 172.99 JPY 1,210,930,000.00 05/08/2014

4 23/07/2014 Sell AUD 13,500,000 0.9408 USD 12,700,800.00 22/08/2014

5 24/07/2014 Buy EUR 11,000,000 1.2148 CHF 13,362,800.00 31/07/2014

6 24/07/2014 Buy CHF 6,000,000 0.6513 GBP 3,907,800.00 31/07/2014

7 25/07/2014 Sell JPY 150,000,000 0.6513 EUR 97,695,000.00 08/08/2014

8 25/07/2014 Sell CAD 17,500,000 0.9025 USD 15,793,750.00 01/08/2014

9 28/07/2014 Buy GBP 7,000,000 1.8366 CAD 12,856,200.00 27/08/2014

10 28/07/2014 Buy EUR 13,500,000 0.7911 GBP 10,679,850.00 11/08/2014

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Each line is relatively efficient	

!
ID,TradeDate,BuySell,Currency1,Amount1,Exchange Rate,Currency2,Amount2,Settlement Date!
1,21/07/2014,Buy,EUR,50000000.00,1.344,USD,67200000.00,28/07/2014!
2,21/07/2014,Sell,USD,35000000.00,0.7441,EUR,26043500.00,20/08/2014!
3,22/07/2014,Buy,GBP,7000000.00,172.99,JPY,1210930000,05/08/2014 

• But it’s in human-readable format not CPU readable	

• At least not efficient CPU readable	

!

• We could store the lines as they are but in order to work with
the data we need it in something Java can work with	

• The same goes for any other language, C, C++, PHP, Scala etc.	

!

• So typically we parse it into a Java class and give it a self-
documenting name - Row

Start with the CSV

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• This seems like a reasonably good implementation	

!

• From this…	

!
ID,TradeDate,BuySell,Currency1,Amount1,Exchange Rate,Currency2,Amount2,Settlement Date!
1,21/07/2014,Buy,EUR,50000000.00,1.344,USD,67200000.00,28/07/2014!
2,21/07/2014,Sell,USD,35000000.00,0.7441,EUR,26043500.00,20/08/2014!
3,22/07/2014,Buy,GBP,7000000.00,172.99,JPY,1210930000,05/08/2014!
!

• We get this…	

!
public class ObjectTrade {  
 private long id;  
 private Date tradeDate;  
 private String buySell;  
 private String currency1;  
 private BigDecimal amount1;  
 private double exchangeRate;  
 private String currency2;  
 private BigDecimal amount2;  
 private Date settlementDate;!
}

CSV to Java

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• With very simple getters and setters, something to parse the CSV
and a custom toString() we’re good	

!
 public BasicTrade parse(String line) throws ParseException {!
 String[] fields = line.split(",");!
 setId(Long.parseLong(fields[0]));!
 setTradeDate(DATE_FORMAT.get().parse(fields[1]));!
 setBuySell(fields[2]);!
 setCurrency1(fields[3]);!
 setAmount1(new BigDecimal(fields[4]));!
 setExchangeRate(Double.parseDouble(fields[5]));!
 setCurrency2(fields[6]);!
 setAmount2(new BigDecimal(fields[7]));!
 setSettlementDate(DATE_FORMAT.get().parse(fields[8]));!
!
 return this;!
 }!
!
• What could possibly go wrong?

Everything’s fine

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• In fact everything works really well, this is how Java was designed
to work	

• There are a few “fixes” to add for SimpleDateFormat due to it not being

thread safe but otherwise we’re good	

!

• Performance is good, well it seems good and everything is well
behaved	

!

• As the years go on and the volumes increase, we now have 100
million of them	

!

• Now we start to see some problems	

• To start with we don’t have enough memory - GC is killing performance	

• When we distribute the size of the objects are killing performance too

This is Java

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• A simple CSV can grow by over 4 times…	

!

ID,TradeDate,BuySell,Currency1,Amount1,Exchange Rate,Currency2,Amount2,Settlement Date!
1,21/07/2014,Buy,EUR,50000000.00,1.344,USD,67200000.00,28/07/2014!
2,21/07/2014,Sell,USD,35000000.00,0.7441,EUR,26043500.00,20/08/2014!
3,22/07/2014,Buy,GBP,7000000.00,172.99,JPY,1210930000,05/08/2014 

• From roughly 70 bytes per line as CSV to around 328 in Java	

!

• That means you get over 4 times less data when 
stored in Java	

!

• Or need over 4 times more RAM, network  
capacity and disk	

• Serialized objects are even bigger!

Why is Java one of the problems?

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• You probably thought XML was bad imagine what happens when
you take XML and bind it to Java!	

!

• Anything you put into Java objects get 
horribly bloated in memory	

!

• Effectively you are paying the price of  
memory and hardware abstraction

Java bloats your data

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• These fat Java Objects are a hardware vendor’s wet dream	

• Think about it, Java came from Sun, it was free but they made money selling

hardware, well they tried at least	

!

• Fat objects need more memory, more CPU, more network
capacity, more machines	

• More money for the hardware vendors	

!

• And everything just runs slower because you’re busy collecting all
the memory you’re not using	

!

• Java for programmers was like free shots for 
AA members

Java Objects - Good for vendors

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Think this is just a Java problem?	

!
!
!
!
!

• It’s all the same, every time you create objects you’re blasting huge
holes all over your machine’s RAM	

!

• And someone’s got to clean all the garbage up too!	

!

• Great for performance-tuning consultants :-)

This isn’t just Java

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• If you use an in-memory cache then you’re most likely suffering
from the same problem…	

!
!
!
!
!
!
!

• Many of them provide and use compression or “clever” memory
optimisation	

• But this usually slows things down, introduces restrictions and only goes so

far to resolve the issue

In-memory caches

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• This is how we’d typically code this simple CSV example…	

!
ID,TradeDate,BuySell,Currency1,Amount1,Exchange Rate,Currency2,Amount2,Settlement Date!
1,21/07/2014,Buy,EUR,50000000.00,1.344,USD,67200000.00,28/07/2014!
2,21/07/2014,Sell,USD,35000000.00,0.7441,EUR,26043500.00,20/08/2014!
3,22/07/2014,Buy,GBP,7000000.00,172.99,JPY,1210930000,05/08/2014!
!
public class ObjectTrade {  
 private long id;  
 private Date tradeDate;  
 private String buySell;  
 private String currency1;  
 private BigDecimal amount1;  
 private double exchangeRate;  
 private String currency2;  
 private BigDecimal amount2;  
 private Date settlementDate;!

}!

!

• It’s easy to write the code and fast to execute, retrieve, search
and query data BUT it needs a lot of RAM and it slow to manage

Classic Java Binding…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• We could just store each row	

!

ID,TradeDate,BuySell,Currency1,Amount1,Exchange Rate,Currency2,Amount2,Settlement Date!
1,21/07/2014,Buy,EUR,50000000.00,1.344,USD,67200000.00,28/07/2014!
2,21/07/2014,Sell,USD,35000000.00,0.7441,EUR,26043500.00,20/08/2014!
3,22/07/2014,Buy,GBP,7000000.00,172.99,JPY,1210930000,05/08/2014!
!
public class StringTrade {  
 private String row;!
}!

!

• But every time we wanted a date or amount we’d need to parse it
and that would slow down analysis	

!

• If the data was XML it would be even worse	

• We’d need a SAX (or other) parser every time

Just store the original data?

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

public class StringTrade {  
 private String row;!
}!

!

• Allocation of new StringTrades are faster as we allocate just 2
Objects	

!

• Serialization and De-Serialization are improved for the same
reason	

!

• BUT over all we lose out when we’re accessing the data	

• We need to find what we’re looking each time	

• This is sort of OK with a CSV but VERY expensive for XML	

!
public class XmlTrade {  
 private String xml;!
}

Just store the original data?

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• OK, a lot of asks, why don’t we just use compression?	

!

• Well there are many reasons, mainly that it’s slow, slow to
compress and slow to de-compress, the better it is the slower it
is	

!

• Compression is the lazy person’s tool, a good protocol or codec
doesn’t compress well, try compressing your MP3s or videos	

!

• It has it’s place but we’re looking for more, we want compaction
not compression, then we get performance too

Compression or Compaction?

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• This is what our binary version looks like…	

!
ID,TradeDate,BuySell,Currency1,Amount1,Exchange Rate,Currency2,Amount2,Settlement Date!
1,21/07/2014,Buy,EUR,50000000.00,1.344,USD,67200000.00,28/07/2014!
2,21/07/2014,Sell,USD,35000000.00,0.7441,EUR,26043500.00,20/08/2014!
3,22/07/2014,Buy,GBP,7000000.00,172.99,JPY,1210930000,05/08/2014!

!
public class ObjectTrade extends SDO {  
 private byte[] data;!
}!

!

• Just one object again so fast to allocate	

!

• If we can encode the data in the binary then it’s fast to query too	

!

• And serialisation is just writing out the byte[]

Now in binary…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Classic getter and setter vs. binary implementation	

!

• Identical API

Same API, just binary

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Just an example…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• This is a key point, we’re changing the implementation not the API	

!

• This means that Spring, in-memory caches and other tools work
exactly as they did before	

!

• Let’s look at some code and 
a little demo of this…

Did I mention … The Same API

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• A quick demo, I’ve created a Trade interface and two
implementations, one “classic” and the other binary	

!
• We’ll create a List of a few million trades (randomly but quite cleverly

generated)	

• We’ll run a quick Java 8 filter and sort on them	

• We’ll serialize and de-serialize them to create a new List	

!

• Finally for the binary version we’ll write out the entire list via
NIO and read it in again to a new List

Time to see some code

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Compare classic Java binding to binary…	

• These are just indicative, the more complex the data the better the

improvement, this is about the worse case (i.e. least impressive)

How does it perform?

Classic Java
version

Binary Java
version

Improvement

Bytes used 328 39 840%

Serialization size 668 85 786%

Custom
Serialization 668 40 1,670%

Time to Serialize/
Deserialize 41.1µS 4.17µS 10x

Batched Serialize/
Deserialize 12.3µS 44nS 280x

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• You probably noticed that the actual byte[] size was 39 but Java
used 48 bytes per instance	

!

• By batching and creating batch classes that handle the large
numbers of instances not as a List or Array but more tightly we
can get further improvements in memory and performance	

!

• 1 million messages or 39 bytes should be exactly 39,000,000 bytes	

• As things get more complex the message size varies and we often have to

compromise with a larger batch quanta	

• We usually have to stick to 8 byte chunks too	

!

• To do this safely we’d probably have to use something like 48
bytes per instance in this example

Batching & Mechanical sympathy

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Knowing how your disk (HDD or SSD) works, knowing how you
network works means we can make further optimisations	

!

• A typical network packet it about 1.5k in size, if we can avoid
going over that size we see considerable network performance
improvements	

!

• What Java set out to do was to abstract the programmer from
the hardware, the memory, CPU architecture and network, that
abstraction has cost us dearly	

• With binary encoding we can keep Java but take advantage of the lower-level

memory usage and batching

Batching & Mechanical sympathy

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• 200 Seconds for serialization and 4GB of heap used

Memory heap usage (Object version)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• GC pause up to 500mS, averaging around 150mS

Memory heap usage (Object version)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• 40 Seconds for serialization and 700MB of heap

Memory heap usage (Binary version)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• GC pause up to 150mS, averaging around 100mS but a lot less

Memory heap usage (Binary version)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• The same but in a 2GB heap

Memory heap usage (Binary version)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• GC pause up to 45mS, averaging around 30mS

Memory heap usage (Binary version)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• While the shapes look the same you can clearly see the
differences on both axis	

• The Object version is a lot slower	

• And the Object version uses significantly more memory	

!

• Note that the left side (objects) has a heap size of 8GB, the right
(binary) has a heap size of just 2GB

Comparing…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• These two graphs show the GC pause time during message
creation and serialisation	

• Left is “classic” Java	

• Right is the binary version	

!

• The top of the right hand graph is lower than the first rung of the
left (50ms)

Comparing…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• The memory usage graphs were created using jClarity’s Censum	

• Many thanks to Martijn and especially Kirk for their help	

!

• Next talk at 4pm in the Continental Ballroom 5

jClarity

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• The C24 generated code for the Trade example is actually smaller,
it averages around 33 bytes	

!

• It uses run-length encoding so we can represent the 64 bit long by
as little as a single byte for small numbers	

!

• This means the size of the binary message varies slightly but for
more complex models/message	

!

• This is probably not a huge advantage for this CSV example but
makes a huge difference with more complex XML

Generated code

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• It worked for a simple CSV how about more complex models like
XML or JSON?	

!

• Once we have a mapping of types to binary and code we can
extend this to any type of model	

!

• But it gets a lot more complex as we have optional elements,
repeating elements and a vast array of different types

Beyond the CSV file…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

 <resetFrequency>  
 <periodMultiplier>6</periodMultiplier>  
 <period>M</period>  
 </resetFrequency>	

!

• JAXB, JIBX, Castor etc. generate something like …	

!

 public class ResetFrequency {
 private BigInteger periodMultiplier; // Positive Integer
 private Object period; // Enum of D, W, M, Q, Y

 public BigInteger getPeriodMultiplier() {
 return this.periodMultiplier;
 }
 // constructors & other getters and setters 

• In memory - 3 objects - at least 144 bytes	

• The parent, a positive integer and an enumeration for Period	

• 3 Java objects at 48 bytes is 144 bytes and it becomes fragmented in memory

Standard Java Binding

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

 <resetFrequency>  
 <periodMultiplier>6</periodMultiplier>  
 <period>M</period>  
 </resetFrequency>	

!

• Using C24’s SDO binary codec we generate …	

!

 ByteBuffer data; // From the root object

 public BigInteger getPeriodMultiplier() {
 int byteOffset = 123; // Actually a lot more complex
 return BigInteger.valueOf(data.get(byteOffset) & 0x1F);
 }
 // constructors & other getters  

• In memory -1 byte for all three fields	

• The root contains one ByteBuffer which is a wrapper for byte[]	

• The getters use bit-fields, Period is just 3 bits for values D, W, M, Q or Y

Our Java Binding

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Performance

Size

How it works

!
!
!

Or any XML
message

Parser	

(Classic Java API)

Validation
(Optional step)

SDO Sink	

(Converts CDO

to SDO)

XML
Fully mutable API	

(Getters, setters, rules,
validation & transformation)

Fully immutable API	

(Getters only)

SDO API	

(to binary FpML)

SDO Source	

(Converts SDO

to CDO)

~5-8k 10-25k < 500 bytes

10k/sec ~1m/sec ~1m/sec

Identical APIs	

(for getters)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Take some raw XML (an FpML derivative, about 7.4k of XML)	

• Parse it, mutate a few variables and then compact each one to its

binary version - We do this 1 million times	

• This takes about 100 seconds	

!

• Now the test begins	

• We take a look at the binary version (just 370 bytes)	

• We search through the 1 million trades for data and aggregate the results	

• Then we try it multi-threaded (using parallelStream())	

• A few more similar operations (I will discuss)	

!

• Finally we’ll write all 1 million to disk and then read them back
into another array (comparing to make sure it worked)	

• This will be a test of serialisation

Another demo…

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

• Key points from the slides…	

!

• If you want performance, scalability and ease of maintenance then
you need…	

• Reduce the amount of memory you’re using	

• Reduce the way you use the memory	

• Try using binary data instead of objects	

• Start coding like we used to in the 80s and 90s	

!

• Or just buy much bigger, much faster machines, more RAM, bigger
networks and more DnD programmers	

• And you’ll probably get free lunches from your hardware vendors

So it works

• Thank you	

!

• Twitter: @jtdavies	

!

• John.Davies@C24.biz	

!
!
!
!
!
!
!
!

• Thank you to Kirk Pepperdine, Andrew Elmore and the C24 team

