CATCH ME IF YOU CAN

JAVA ON WEARABLES

Gerrit Grunwald Java Technology Evangelist Oracle

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

ABOUT ME

Gerrit Grunwald
Java Technology
Evangelist
Oracle

WEARABLES

WHAT IS IT...?

WHAT IS IT...?

- Miniature electronic device
- Worn under, with or on top of clothing
- Needs more computational support than hardware coded logics
- Many things in common with smart phones

EXAMPLES

EXAMPLES

Watches

Earphones

Clothing

USE CASES...?

USE CASES

- Fitness- and Health-tracking
- Map and Directions
- Note-Taking and Productivity
- Informational

REQUIREMENTS

REQUIREMENTS

- Small form factor
- Smart power management
- Connectivity
- Life proof

SMALL FORM FACTOR

- Small size
- Leightweight
- As few cables as possible

SMART POWER MANAGEMENT

- Low power consumption
- Enhanced battery life
- Sleep mode strategy

CONNECTIVITY

- Cable
- Bluetooth
- WiFi
- 3G/4G

LIFE PROOF

- Waterproof
- Drop proof
- Dust proof
- Sweat proof

SITUATION

SITUATION

- Lots of devices available
- Devices with predefined features
- No real standard
- Hard to combine products

WHAT IF YOU NEED SOMETHING SPECIAL?

JRUNNER

- Track the location of a runner/biker
- Track the heart rate, temperature, pressure
- Live tracking on desktop application
- Ability to contact runner/biker
- Interact via Smart Watch/Smart Phone

THE WEARABLE

WHAT JRUNNER CAN DO

- Read gps data (lat, lon, alt, spd, dir)
- Read heart rate, temperature, pressure, accel. data
- Talk to the Runner (using TTS)
- Publish updates via MQTT to subscribers
- Gives haptic feedback through vibration motor
- Can be switched on and has auto shutdown
- Monitors it's battery status

PLATFORM

PLATFORM

Raspberry Pi

SENSORS

TRACKING LOCATION

TRACKING LOCATION

Adafruit Ultimate GPS 66

Easy to access

"Cheap"

GPS onlyForm factor

TRACKING LOCATION

Navspark SUP800F

- **Easy** to setup
- **Easy to access**
- **▲** Temperature
- ▲ Accelerometer
- **★** FormFactor

ACCESS GPS SENSOR

```
private void initSerial() {
   try {
        SERIAL.open(Serial.DEFAULT_COM_PORT, BAUD_RATE);
    } catch (SerialPortException exception) {
        return;
   SERIAL.addListener(event -> {
        final String[] DATA_ARRAY = event.getData().replaceAll("\r\n", ";").split(";");
        for (String data : DATA ARRAY) {
            if (data.startsWith(GGASentence.HEADER)) {
                GGA SENTENCE.parse(data);
            } else if (data.startsWith(VTGSentence.HEADER)) {
                VTG_SENTENCE.parse(data);
            } else if (data.startsWith(STISentence.HEADER)) {
                STI_SENTENCE.parse(data);
    });
```


TRACKING HEART RATE

TRACKING HEART RATE

Sparkfun Pulse Sensor

Optical approach

TRACKING HEART RATE

Polar Heart Rate Monitor

- **Easy** to setup
- **Easy to access**
- "Standard"

Form factor

TRACKING HEART RATE

Polar Heart Rate Sensor

- **Easy** to setup
- **Easy to access**
- Form factor
- Pulse detection

ACCESS HEART RATE SENSOR

ACCESS HEART RATE SENSOR

```
public enum HeartRateMonitor {
   INSTANCE;
                              PULSE_TIME
   private static final int
                                               = 15; // Milliseconds of each pulse send by the Polar board
   private static final int
                               BEATS TO STORE = 10;
   private
                        long[] timeBetweenBeats = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
                        int
                               beatCount
   private
                                               = 0;
                                               = System.currentTimeMillis();
   private
                        long
                               lastBeat
   public void beat() {
       long now
                  = System.currentTimeMillis();
       long delta = now - lastBeat - PULSE TIME;
       if (delta > 272 && delta < 1224) {</pre>
           timeBetweenBeats[beatCount] = delta;
           beatCount++;
           if (beatCount > 9) beatCount = 0;
       lastBeat = now;
   public int getHeartRate() {
       double average = LongStream.of(timeBetweenBeats).sum() / BEATS TO STORE;
       double rate = 60 / (average / 1000);
       return (int) rate;
   }}
```


CONNECTIVITY

MEANS

COMMUNICATION

TECHNOLOGIE S	IrDA	NFC	ANT+	ZigBee	WiFi	Bluetoot h
MAX. THROUGHPUT	200 kbps	424 kbps	20 kbps	250 kbps	6 Mbps	305 kbps
LATENCY	25 ms	1 <i>s</i>	0	25 ms	1.5 ms	2.5 ms
RANGE	1 m	5 cm	10 m	300 m	150 m	50 m
PEAK CONSUMPTIO	10 mA	50 mA	17 mA	40 mA	116 mA	16 mA

EXAMPLES...

HUAWEI E303

- Automatic connect

- Tricky to setup
- Power cons. (~300mA)
- Needs big battery
- Form factor

ADAFRUIT FONA

Full mobile phone

Flexible

Power cons (>200mA)

FONA needs battery

Pi needs battery

Form factor

TP-LINK M5360 + WIFI ADAPTER

- High data rate (3G/LTE)
- ▲ Automatic connect
- Pi can use power bank
- Heavy lifting done by Hotspot

- Form factor
- Power cons. (~116mA)

MOBILE PHONE + BLE ADAPTER

- Automatic connect
- ★ Flexible 3G/LTE
- Power cons. (~16mA)
- Heavy lifting done by phone

Pi needs battery

	3G Stick	FONA	WiFi	BLE
AUTONOMOUS	YES	YES	NO	NO
SPEED	7 Mbps	10 kbps	6 Mbps	305 kbps
FORM FACTOR	CLUNKY	CLUNKY	SMALL	SMALL
WEIGHT	LEIGHTWEIGHT	MEDIUM	LEIGHTWEIGHT	LEIGHTWEIGHT
POWER CONSUMPTION	300 mA	200 mA	116 mA	16 mA
INDEPENDENT	YES	YES	NEEDS HOTSPOT	NEEDS PHONE
BATTERY	1 BIG	2 SMALL	1 BIG	1 SMALL

PUBLISH

SUBSCRIBE

PUBLISH & SUBSCRIBE

- XMPP

 (eXtensible Messaging and Presence Protocol)
- MQTT
 (Message Queue Telemetry Transport)

XMPP

- Perfect for Person to Person
- No support for QoS
- Text based due to XML
- Public free infrastructure
- Ignite Realtime Smack Java library

MQTT

- Perfect for M2M
- Lightweight
- Low power
- Support for QoS
- Eclipse Paho Java library

INTERACTION

INTERACTION

INTERACTION

HARDWARE

VERSION 1

THE WEARABLE V1 (WIFI BASED)

PROBLEM...

POWER SUPPLY

SOLUTION

POWER SUPPLY

THE WEARABLE V1 (WIFI BASED)

DRAWBACK

VERSION 2

VERSION 2

Odroid-W Raspberry Pi Model B+

THE WEARABLE V2 (BLE BASED)

- Odroid-W
- 750 mAh LiPo Battery
- Slice of Pi
- SUP800F GPS
- Polar Heart Beat Sensor
- BLE USB Stick
- ON Switch
- Vibration motor

THE WEARABLE V2 (BLE BASED)

ADVANTAGE...

Bluetooth SMART

- Runner location
- BPM, height, speed, distance, temperature, pressure, battery
- Friends location

Java*F*x

- Different map layers
- Additional map overlays

Java*F*x

· e.g. Temperature

- Show dates with recordings
- Restore saved recordings

- Show track on map
- Track segments are colored dependent on heart rate
- Show points of interests

 Click on track segments will show altitude and bpm of selected segment

- Visualizes altitude over time
- Visualizes heart rate over time

- Can send text messages via MQTT to Runner
- Tell the Runner the current heart rate

Java*F*x

 Visualizes weather information at runner location

CPU 1.3 GHz ARM A7 DualCore

GPU PowerVR SGX543 MP3 Triple Core

RAM 32 GB (1 GB for apps)

RES 640x1136

OS iOS

CPU 1.6 GHz ARM A15 QuadCore

GPU PowerVR SGX544 MP3

RAM 16 GB (2 GB for apps)

RES 1080x1920

OS Android

CPU 1 GHz ARM A9 DualCore

GPU PowerVR SGX531

RAM 2 GB (512 MB for apps)

RES 320x320

OS Android

SETUPS

FUTURE IMPROVEMENTS

WARP BOARD

- 1 GHz i.MX6 CPU
- WiFi
- BlueTooth Low Energy
- Accelerometer
- Magnetometer
- ~ 18 x 42 mm

SO...WHY JAVA

WHY JAVA

- Re-use a lot of classes/code
- Great Java IDEs
- Use your build infrastructure
- Use your test environment

