

Taking Hudson to the Next Level

om CI to CD

CREATE THE FUTURE

rogram Agenda

- 1 Hudson in a nutshell
- Latest changes in Hudson
- Hudson for continuous delivery
- Case studies Hudson @ Oracle

Continuous Integration Server

- Manage the essential flow of a modern development env.
- Heterogeneous technologies and operating systems
- Extensible

Has all the Right Bits for Continuous Integration

- Runs automatically
 - SCM: GIT, SVN, CVS, Perforce...
 - Builds: Maven, Ant, scripts...
 - Testing: Junit, Selenium, Abbot...
 - Deployment: app servers, web...
- Feedback
 - Email, IM, RSS, Lava Lamp...
- Analysis
 - Clover, Sonar, PMD...

The Project

- Mature Technology Project at the Eclipse Foundation www.eclipse.org/hudson | www.hudson-ci-org
 - Hudson Core is EPL licensed
 - Plug-ins mixed licenses; usually MIT
- Current release 3.2.1 (Sept 2014)
 - Project plan available @ Eclipse
 - http://projects.eclipse.org/projects/technology.hudson
- Open (non-Eclipse) plug-in community, GitHub, java.net etc.

What's been Happening in Hudson?

From CI for an Individual / Small Team

What Matters?

- Saving Time
- Agility
- Flexibility

To CD in the Enterprise

What Matters?

- Manageability
- Security
- Performance and Scalability
- Visibility
- Legal / IP

Hudson – Embracing the Enterprise

Core Theme to make Hudson more Enterprise Friendly

- IP Hudson 3.0 cleaned up and documented all deps.
 - 109 libraries reduced to 85
 - LGPL and unprovenanced libraries removed / replaced
- Plug-in management
 - Switchable Update Centers and initial setup capabilities
- More complex pipelines
 - Cascading templates

Hudson – Address Scalability

Hudson 3.1 – Yet More...

- Big memory optimization exercise
 - Can reduce required heap by
 between 50-75% for the same set of jobs
 - The more builds the bigger the savings
- Team Concept
 - Allowing sandboxed use of a single infrastructure

Hudso 3.1 512

52

0

* A single user or group can be present in more than one team with different rights in each case

Hudson – Latest

Some Housekeeping and More...

- Team Concept
 - Per-team views
 - Per-team slaves
- Spring Upgrade (3.1.2)
 - Includes upgrade to the security layer
 - Major internal re-working
- Plugins
 - Needed reworking to support Spring changes
 - Now have multiple plugin centers

Hudson For Continuous Delivery

Development Lifecycle Evolution

Until 2000

Typical turn around time is 6 months to 1 year

Sprint cycle is typically 2 weeks to 4 weeks

But it's More than Continuous Integration CI is but the First Step

- Continuous Delivery
 - A set of practices and principles aimed at building, testing and releasing software faster and frequently
 - Produce a deployable-to-production build regularly, probably on each commit.
 - Every build is a potential release.

Hudson for CI

ludson is mostly tuned to focus on development teams

Typical Sprint Cycle

commit to deploy

In a Test Driven Development build pipeline, Continuous Integration is the first step and the end result is the Continuous Delivery.

While Continuous Delivery promotes the concept of keeping your product in a <u>deliverable state</u> on each commit, Continuous Deployment takes it further. On each commit, the deliverable can be <u>deployed</u> to a production environment.

Moving on to Continuous Delivery

Think in terms of Build Pipeline and promotion

Commit

Build and Test

- Unit tests
- Static code coverage
- Packaging
- Integration tests
- UI tests
- Performance tests
- Regression tests
- Deployment tests (install, uninstall etc.)
- Manual exploratory tests
- Regulatory, compliance checks
- Clearance from UAT

Stage and Deploy

Team Management (3.2) for CD environment Tenant enabled

Hudson 3.2 enables per tenant resource isolation and sharing. This Bringing the Dev-Ops (dev-qa-ops) team together, but with resource isolation to play nicely in a Continuous Delivery Environment.

CD Best Practice: Monitor Quality Metrics Trend

Code quality measurement is important in Continuous delivery. Improves the confidence of the product being in a deliverable state.

CD Best practice: Monitor Test Trends

า flux.

Choosing Plugins for the Practicing of CD

http://wiki.eclipse.org/Hudson-ci#Hudson Plugins

Copyright © 2014

Practicing Continuous Delivery using Hudson

tps://wiki.eclipse.org/File:Practicing_continuous_delivery_using_hudson.pdf

Commit

Build Magic

Production Ready

Case Study – Developer Cloud Service

ase Study: Oracle Developer Cloud Service

Development Platform provided as a Service

Application Lifecycle Management

Team Management

ource Control Management

Issue Tracking

Hudson Continuous Integration

Wiki Collaborati

Oracle Developer Cloud Service

Hudson 3.2 - Stability and Density in Multi-tenancy

- ODCS Projects organized by Hudson Teams
 - Single Hudson Master per Tenant
- Memory and Stability Improvements
 - Stability improves predictability
 - Removed regular Master restart scripts
 - 75% savings on Heap allocation per master
 - One order of magnitude more tenants per hardware allocation
- On-demand provisioning of Hudson Slaves

Case Study - Delivering Oracle Fusion Middleware with Hudson

olving a Problem

Oracle's development org is big – very big (and heterogeneous)

- Mix of SCMs
- Mix of build methodology
- Mix of testing, quality and security tools
- Multiple bug, task and requirement systems
- Mix of deliverables
- Infrastructure!
- Huge complexity in release promotion and consumption
- Fortunately Hudson gives us common ground and the adaptability we nee
- But it needs a little help...

leeting Challenges of CD at Scale

Core activities need to be managed centrally

- Pushing new plugins / maintaining local plugin center
- Tracking plugin usage by job and plugin version
- SSH key management across Hudson executors and SCM systems
- Management of local tools installation
- Managing the recipes for Hudson slave machines

Security

- In our case, a single SSO system used across the farm
- Organization specific policies for control and sharing

ludson at Scale

The numbers

- 87 Hudson masters (allocated by organizations within development)
- − ~1200 slaves
- More than 25,000 jobs

Coordinated by "Carson" message bus

- Manages event driven continuous delivery pipeline
- − Bus handles ~ 1,000,000 messages / week
- Manages retry in case of infrastructure failure
- Provides management UI and additional reporting on pipelines

)verview

What's Next for Hudson?

3.3 And Beyond?

- We're thinking about
 - Modernizing the UI
 - **—** ...
- What about You?
 - Join the Birds-of-a-Feather Session @ 7PM right here!

