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Event-sourcing

Is all about getting  
the facts straight
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Databases are  
shared mutable state



Concert 
!

artist: String 
date: Date 
availableTickets: int 
price: int 
... 

TicketOrder 
!

noOfTickets: int 
userId: String 

1 *

Typical entity modelling
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Congratulations, you are 
!

LOSING DATA EVERY DAY

Update or delete statements in your app?
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Event-sourced modelling
ConcertCreated 

!

artist = Aerosmith 
availableTickets = 100 
price = 10 
... 

!

PriceChanged 
!

price = 100 

OrderCancelled 
!

userId = 1

TicketsOrdered 
!

noOfTickets = 3 
userId = 1

TicketsOrdered 
!

noOfTickets = 3 
userId = 1

TicketsOrdered 
!
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Event-sourced modelling
‣ Immutable events 
‣ Append-only storage (scalable) 
‣ Replay events: reconstruct historic state 
‣ Events as integration mechanism 
‣ Events as audit mechanism



Events: where from?

Event-sourcing: capture all changes to 
application state as a sequence of events



Events&Commands
Do something (active)

It happened. 
Deal with it.  
(facts)

Can be rejected (validation)

Can be responded to



Querying & event-sourcing
How do you query a log?



Querying & event-sourcing

Command
Query
Responsibility
Segregation

How do you query a log?
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Service layer
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Command Query

UI/Client

Command 
Model

Datastore

Query 
Model(s)

DatastoreDatastoreDatastore

Command Query

?



Event-sourced CQRS

UI/Client

Command 
Model

Journal

Query 
Model(s)

DatastoreDatastoreDatastore

Command Query

Events



Actors
‣ Mature and open source 
‣ Scala & Java API 
‣ Akka Cluster



Actors
"an island of consistency in a sea of concurrency"

Actor 
!

!

!

mailbox

state

behavior

async message 
send

Process message: 
‣ update state 
‣ send messages 
‣ change behavior 
Don't worry about  
concurrency



Actors
A good fit for event-sourcing?

Actor 
!

!

!

mailbox

state

behavior

mailbox is non-durable 
(lost messages)

state is transient



Actors
Just store all incoming messages?

Actor 
!

!

!

mailbox

state

behavior

async message 
send

store in journal

Problems with 
command-sourcing: 
‣ side-effects 
‣ poisonous 

(failing) messages 



Persistence
‣ Experimental Akka module 
‣ Scala & Java API 
‣ Actor state persistence based 

on event-sourcing



Persistent Actor
PersistentActor 

actor-id 
!

!

!

event

async message 
send (command)

‣ Derive events from  
commands 

‣ Store events 
‣ Update state 
‣ Perform side-

effects 

journal (actor-id)

event

state



Persistent Actor
PersistentActor 

actor-id 
!

!

!

event

!

Recover by replaying 
events, that update the 
state (no side-effects) 
!

journal (actor-id)

event

state



Persistent Actor
!
case object Increment     // command 
case object Incremented   // event 
!
class CounterActor extends PersistentActor { 
  def persistenceId = "counter" 
!
  var state = 0 
!
  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
  } 
!
  val receiveRecover: Receive = { 
    case Incremented => state += 1 
  } 
}
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async callback 
(but safe to close 
over state)
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Persistent Actor
!
case object Increment     // command 
case object Incremented   // event 
!
class CounterActor extends PersistentActor { 
  def persistenceId = "counter" 
!
  var state = 0 
!
  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
  } 
!
  val receiveRecover: Receive = { 
    case Incremented => state += 1 
  } 
}

Isn't recovery 
with lots of events  
slow?



Snapshots
class SnapshottingCounterActor extends PersistentActor { 
  def persistenceId = "snapshotting-counter" 
!
  var state = 0 
!
  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
    case "takesnapshot" => saveSnapshot(state) 
  } 
!
  val receiveRecover: Receive = { 
    case Incremented => state += 1 
    case SnapshotOffer(_, snapshotState: Int) => state = snapshotState 
  } 
}



Snapshots
class SnapshottingCounterActor extends PersistentActor { 
  def persistenceId = "snapshotting-counter" 
!
  var state = 0 
!
  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
    case "takesnapshot" => saveSnapshot(state) 
  } 
!
  val receiveRecover: Receive = { 
    case Incremented => state += 1 
    case SnapshotOffer(_, snapshotState: Int) => state = snapshotState 
  } 
}



Snapshot&Journal
Cassandra

KafkaKafka

HBase

DynamoDB

MongoDB

HBase

MapDB

JDBC JDBC

Cassandra

MongoDB

Plugins:



Default: Java serialization

Pluggable through Akka: 
‣ Protobuf 
‣ Kryo 
‣ Avro 
‣ Your own

Plugins:
Serialization



Persistent View
Persistent 

Actor 

journal 

Persistent 
View 

Persistent 
View 

Views poll the journal 
‣ Eventually consistent 
‣ Polling configurable 
‣ Actor may be inactive 
‣ Views track single 

persistence-id 
‣ Views can have own 

snapshots 
snapshot store 

other 
datastore



!

"The Database is a cache 
of a subset of the log"  
- Pat Helland

Persistent View
Persistent 

Actor 

journal 

Persistent 
View 

Persistent 
View 

snapshot store 
other 

datastore



Persistent View
!
case object ComplexQuery 
class CounterView extends PersistentView { 
  override def persistenceId: String = "counter" 
  override def viewId: String = "counter-view" 
  
  var queryState = 0 
   
  def receive: Receive = { 
    case Incremented if isPersistent => { 
      queryState = someVeryComplicatedCalculation(queryState) 
      // Or update a document/graph/relational database 
    } 
    case ComplexQuery                => { 
      sender() ! queryState; 
      // Or perform specialized query on datastore 
    } 
  } 
 } 
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Persistent View
!
case object ComplexQuery 
class CounterView extends PersistentView { 
  override def persistenceId: String = "counter" 
  override def viewId: String = "counter-view" 
  
  var queryState = 0 
   
  def receive: Receive = { 
    case Incremented if isPersistent => { 
      queryState = someVeryComplicatedCalculation(queryState) 
      // Or update a document/graph/relational database 
    } 
    case ComplexQuery                => { 
      sender() ! queryState; 
      // Or perform specialized query on datastore 
    } 
  } 
 } 



Sell concert tickets
ConcertActor 

!

!

price 
availableTickets 
startTime 
salesRecords 

!

Commands: 
CreateConcert 
BuyTickets 
ChangePrice 
AddCapacity

journal

ConcertHistoryView 
!

!

!

!

0
15
30
45
60

$50 $75 $100

0
50

100

code @ bit.ly/akka-es



Scaling out: Akka Cluster

Cluster node Cluster node Cluster node 

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "2"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "3"

Single writer: persistent actor must be singleton, views may be anywhere

distributed journal



Scaling out: Akka Cluster

Cluster node Cluster node Cluster node 

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "2"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "3"

Single writer: persistent actor must be singleton, views may be anywhere

How are persistent actors distributed over cluster?

distributed journal



Scaling out: Akka Cluster

Cluster node Cluster node Cluster node 

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "2"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "3"

Sharding: Coordinator assigns ShardRegions to nodes (consistent hashing) 
                 Actors in shard can be activated/passivated, rebalanced

Shard 
Region

Shard 
Region

Shard 
Region

Coordinator

distributed journal



Scaling out: Sharding
val idExtractor: ShardRegion.IdExtractor = { 
    case cmd: Command => (cmd.concertId, cmd) 
 }

IdExtractor allows ShardRegion 
to route commands to actors
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Scaling out: Sharding
val idExtractor: ShardRegion.IdExtractor = { 
    case cmd: Command => (cmd.concertId, cmd) 
 }

IdExtractor allows ShardRegion 
to route commands to actors

val shardResolver: ShardRegion.ShardResolver =  
    msg => msg match { 
       case cmd: Command => hash(cmd.concert) 
    }

ShardResolver assigns new  
actors to shards

ClusterSharding(system).start( 
  typeName = "Concert", 
  entryProps = Some(ConcertActor.props()), 
  idExtractor = ConcertActor.idExtractor, 
  shardResolver = ConcertActor.shardResolver)

Initialize ClusterSharding 
extension

val concertRegion: ActorRef = ClusterSharding(system).shardRegion("Concert") 
   
 concertRegion ! BuyTickets(concertId = 123, user = "Sander", quantity = 1)



Design for event-sourcing
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DDD:    Domain Driven Design 
DDD+CQRS+ES

Aggregate  
!

Aggregate  
!

Eventual 
Consistency

Fully consistent Fully consistent

Akka Persistence is not a DDD/CQRS framework
But it comes awfully close

Root entity

entityentityentity

Root entity

entity entity

Persistent 
Actor 

Persistent 
Actor 

Message 
passing
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Structural representation(s) follow ERD
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Designing aggregates
Focus on events 
Structural representation(s) follow ERD

Size matters. Faster replay, less write contention 
                          Don't store derived info (use views)

With CQRS read-your-writes is not the default 
When you need this, model it in a single Aggregate 



Between aggregates
‣ Send commands to other aggregates by id 
!

‣ No distributed transactions 
‣ Use business level ack/nacks 
‣ SendInvoice -> InvoiceSent/InvoiceCouldNotBeSent 
‣ Compensating actions for failure 
‣ No guaranteed delivery 
‣ Alternative: AtLeastOnceDelivery



Kafka

topic 1 topic 2 derived

Between systems
Application

System integration through event-sourcing

Akka 
Persistence

Spark 
Streaming

External 
Application
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‣ Self-contained 
‣ Unit of atomic change 
‣ Granularity and intent
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Designing commands
‣ Self-contained 
‣ Unit of atomic change 
‣ Granularity and intent

UpdateAddress 
street = ... 

city = ... vs

ChangeStreet 
street = ... 

ChangeCity 
street = ... 

Move 
street = ... 

city = ... vs
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Designing events
CreateConcert

ConcertCreated ConcertCreated

who/when/..

Add metadata 
to all events

ConcertCreated
Past tense 
Irrefutable

TicketsBought 
newCapacity = 99

TicketsBought 
quantity = 1

Delta-based 
No derived info
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Versioning

event v1

event v1

event v2

event v2

Actor logic: 
v1 and v2

event v1

event v1

event v2

event v2

event v2

event v2

Actor logic: 
v2

event v1

event v1

event v2

event v2

snapshot

Actor logic: 
v2

‣ Be backwards 
compatible 

‣ Avro/Protobuf 
‣ Serializer can do 

translation 
!

‣ Snapshot 
versioning: 
harder 
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In conclusion
Event-sourcing is...

Powerful

but unfamiliar

Combines well with

DDD/CQRS

UI/Client

Command 
Model

Journal

Query 
Model

DatastoreDatastoreDatastore

Events

Not a



In conclusion
Akka Actors & Akka Persistence

A good fit for 
event-sourcing

PersistentActor 
actor-id 

!
!

!

async message 
send 
(command)

journal (actor-id)

event
event

state

Experimental, view 
improvements needed



Thank you. 
!

code @ bit.ly/akka-es

@Sander_Mak 
Luminis Technologies


