
Event-sourced
architectures

with Akka

@Sander_Mak
Luminis Technologies

Today's journey

Event-sourcing

Actors

Akka Persistence

Design for ES

Event-sourcing

Is all about getting
the facts straight

Typical 3 layer architecture
UI/Client

Service layer

Database

fetch ↝ modify ↝ store

Typical 3 layer architecture
UI/Client

Service layer

Database

fetch ↝ modify ↝ store

Databases are
shared mutable state

Concert
!

artist: String
date: Date
availableTickets: int
price: int
...

TicketOrder
!

noOfTickets: int
userId: String

1 *

Typical entity modelling

Typical entity modelling
Concert

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder

noOfTickets = 3
userId = 1

Changing the price

Typical entity modelling
Concert

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder

noOfTickets = 3
userId = 1

Changing the price

Typical entity modelling
Concert

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder

noOfTickets = 3
userId = 1

✘100

Canceling an order

Typical entity modelling
Concert

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder

noOfTickets = 3
userId = 1

Canceling an order

Typical entity modelling
Concert

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketOrder
!

noOfTickets = 3
userId = 1

TicketOrder
!

noOfTickets = 3
userId = 1

Congratulations, you are
!

LOSING DATA EVERY DAY

Update or delete statements in your app?

Event-sourced modelling
ConcertCreated

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

time

Changing the price

Event-sourced modelling
ConcertCreated

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

time

Changing the price

Event-sourced modelling
ConcertCreated

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

PriceChanged
!

price = 100

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

time

Event-sourced modelling
ConcertCreated

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

PriceChanged
!

price = 100

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

Canceling an order

time

Event-sourced modelling
ConcertCreated

!

artist = Aerosmith
availableTickets = 100
price = 10
...

!

PriceChanged
!

price = 100

OrderCancelled
!

userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

TicketsOrdered
!

noOfTickets = 3
userId = 1

Canceling an order

time

Event-sourced modelling
‣ Immutable events
‣ Append-only storage (scalable)
‣ Replay events: reconstruct historic state
‣ Events as integration mechanism
‣ Events as audit mechanism

Events: where from?

Event-sourcing: capture all changes to
application state as a sequence of events

Events&Commands
Do something (active)

It happened.
Deal with it.
(facts)

Can be rejected (validation)

Can be responded to

Querying & event-sourcing
How do you query a log?

Querying & event-sourcing

Command
Query
Responsibility
Segregation

How do you query a log?

CQRS without ES

UI/Client

Service layer

Database

Command Query

CQRS without ES

UI/Client

Service layer

Database

Command Query

UI/Client

Command
Model

Datastore

Query
Model(s)

DatastoreDatastoreDatastore

Command Query

?

Event-sourced CQRS

UI/Client

Command
Model

Journal

Query
Model(s)

DatastoreDatastoreDatastore

Command Query

Events

Actors
‣ Mature and open source
‣ Scala & Java API
‣ Akka Cluster

Actors
"an island of consistency in a sea of concurrency"

Actor
!

!

!

mailbox

state

behavior

async message
send

Process message:
‣ update state
‣ send messages
‣ change behavior
Don't worry about
concurrency

Actors
A good fit for event-sourcing?

Actor
!

!

!

mailbox

state

behavior

mailbox is non-durable
(lost messages)

state is transient

Actors
Just store all incoming messages?

Actor
!

!

!

mailbox

state

behavior

async message
send

store in journal

Problems with
command-sourcing:
‣ side-effects
‣ poisonous

(failing) messages

Persistence
‣ Experimental Akka module
‣ Scala & Java API
‣ Actor state persistence based

on event-sourcing

Persistent Actor
PersistentActor

actor-id
!

!

!

event

async message
send (command)

‣ Derive events from
commands

‣ Store events
‣ Update state
‣ Perform side-

effects

journal (actor-id)

event

state

Persistent Actor
PersistentActor

actor-id
!

!

!

event

!

Recover by replaying
events, that update the
state (no side-effects)
!

journal (actor-id)

event

state

Persistent Actor
!
case object Increment // command
case object Incremented // event
!
class CounterActor extends PersistentActor {
 def persistenceId = "counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 }
}

Persistent Actor
!
case object Increment // command
case object Incremented // event
!
class CounterActor extends PersistentActor {
 def persistenceId = "counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 }
}

Persistent Actor
!
case object Increment // command
case object Incremented // event
!
class CounterActor extends PersistentActor {
 def persistenceId = "counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 }
}

async callback
(but safe to close
over state)

Persistent Actor
!
case object Increment // command
case object Incremented // event
!
class CounterActor extends PersistentActor {
 def persistenceId = "counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 }
}

Persistent Actor
!
case object Increment // command
case object Incremented // event
!
class CounterActor extends PersistentActor {
 def persistenceId = "counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 }
}

Isn't recovery
with lots of events
slow?

Snapshots
class SnapshottingCounterActor extends PersistentActor {
 def persistenceId = "snapshotting-counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 case "takesnapshot" => saveSnapshot(state)
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 case SnapshotOffer(_, snapshotState: Int) => state = snapshotState
 }
}

Snapshots
class SnapshottingCounterActor extends PersistentActor {
 def persistenceId = "snapshotting-counter"
!
 var state = 0
!
 val receiveCommand: Receive = {
 case Increment => persist(Incremented) { evt =>
 state += 1
 println("incremented")
 }
 case "takesnapshot" => saveSnapshot(state)
 }
!
 val receiveRecover: Receive = {
 case Incremented => state += 1
 case SnapshotOffer(_, snapshotState: Int) => state = snapshotState
 }
}

Snapshot&Journal
Cassandra

KafkaKafka

HBase

DynamoDB

MongoDB

HBase

MapDB

JDBC JDBC

Cassandra

MongoDB

Plugins:

Default: Java serialization

Pluggable through Akka:
‣ Protobuf
‣ Kryo
‣ Avro
‣ Your own

Plugins:
Serialization

Persistent View
Persistent

Actor

journal

Persistent
View

Persistent
View

Views poll the journal
‣ Eventually consistent
‣ Polling configurable
‣ Actor may be inactive
‣ Views track single

persistence-id
‣ Views can have own

snapshots
snapshot store

other
datastore

!

"The Database is a cache
of a subset of the log"
- Pat Helland

Persistent View
Persistent

Actor

journal

Persistent
View

Persistent
View

snapshot store
other

datastore

Persistent View
!
case object ComplexQuery
class CounterView extends PersistentView {
 override def persistenceId: String = "counter"
 override def viewId: String = "counter-view"

 var queryState = 0

 def receive: Receive = {
 case Incremented if isPersistent => {
 queryState = someVeryComplicatedCalculation(queryState)
 // Or update a document/graph/relational database
 }
 case ComplexQuery => {
 sender() ! queryState;
 // Or perform specialized query on datastore
 }
 }
 }

Persistent View
!
case object ComplexQuery
class CounterView extends PersistentView {
 override def persistenceId: String = "counter"
 override def viewId: String = "counter-view"

 var queryState = 0

 def receive: Receive = {
 case Incremented if isPersistent => {
 queryState = someVeryComplicatedCalculation(queryState)
 // Or update a document/graph/relational database
 }
 case ComplexQuery => {
 sender() ! queryState;
 // Or perform specialized query on datastore
 }
 }
 }

Persistent View
!
case object ComplexQuery
class CounterView extends PersistentView {
 override def persistenceId: String = "counter"
 override def viewId: String = "counter-view"

 var queryState = 0

 def receive: Receive = {
 case Incremented if isPersistent => {
 queryState = someVeryComplicatedCalculation(queryState)
 // Or update a document/graph/relational database
 }
 case ComplexQuery => {
 sender() ! queryState;
 // Or perform specialized query on datastore
 }
 }
 }

Sell concert tickets
ConcertActor

!

!

price
availableTickets
startTime
salesRecords

!

Commands:
CreateConcert
BuyTickets
ChangePrice
AddCapacity

journal

ConcertHistoryView
!

!

!

!

0
15
30
45
60

$50 $75 $100

0
50

100

code @ bit.ly/akka-es

Scaling out: Akka Cluster

Cluster node Cluster node Cluster node

Persistent
Actor

id = "1"

Persistent
Actor

id = "1"

Persistent
Actor

id = "1"

Persistent
Actor

id = "2"

Persistent
Actor

id = "1"

Persistent
Actor

id = "3"

Single writer: persistent actor must be singleton, views may be anywhere

distributed journal

Scaling out: Akka Cluster

Cluster node Cluster node Cluster node

Persistent
Actor

id = "1"

Persistent
Actor

id = "1"

Persistent
Actor

id = "1"

Persistent
Actor

id = "2"

Persistent
Actor

id = "1"

Persistent
Actor

id = "3"

Single writer: persistent actor must be singleton, views may be anywhere

How are persistent actors distributed over cluster?

distributed journal

Scaling out: Akka Cluster

Cluster node Cluster node Cluster node

Persistent
Actor

id = "1"

Persistent
Actor

id = "1"

Persistent
Actor

id = "1"

Persistent
Actor

id = "2"

Persistent
Actor

id = "1"

Persistent
Actor

id = "3"

Sharding: Coordinator assigns ShardRegions to nodes (consistent hashing)
 Actors in shard can be activated/passivated, rebalanced

Shard
Region

Shard
Region

Shard
Region

Coordinator

distributed journal

Scaling out: Sharding
val idExtractor: ShardRegion.IdExtractor = {
 case cmd: Command => (cmd.concertId, cmd)
 }

IdExtractor allows ShardRegion
to route commands to actors

Scaling out: Sharding
val idExtractor: ShardRegion.IdExtractor = {
 case cmd: Command => (cmd.concertId, cmd)
 }

IdExtractor allows ShardRegion
to route commands to actors

val shardResolver: ShardRegion.ShardResolver =
 msg => msg match {
 case cmd: Command => hash(cmd.concert)
 }

ShardResolver assigns new
actors to shards

Scaling out: Sharding
val idExtractor: ShardRegion.IdExtractor = {
 case cmd: Command => (cmd.concertId, cmd)
 }

IdExtractor allows ShardRegion
to route commands to actors

val shardResolver: ShardRegion.ShardResolver =
 msg => msg match {
 case cmd: Command => hash(cmd.concert)
 }

ShardResolver assigns new
actors to shards

ClusterSharding(system).start(
 typeName = "Concert",
 entryProps = Some(ConcertActor.props()),
 idExtractor = ConcertActor.idExtractor,
 shardResolver = ConcertActor.shardResolver)

Initialize ClusterSharding
extension

Scaling out: Sharding
val idExtractor: ShardRegion.IdExtractor = {
 case cmd: Command => (cmd.concertId, cmd)
 }

IdExtractor allows ShardRegion
to route commands to actors

val shardResolver: ShardRegion.ShardResolver =
 msg => msg match {
 case cmd: Command => hash(cmd.concert)
 }

ShardResolver assigns new
actors to shards

ClusterSharding(system).start(
 typeName = "Concert",
 entryProps = Some(ConcertActor.props()),
 idExtractor = ConcertActor.idExtractor,
 shardResolver = ConcertActor.shardResolver)

Initialize ClusterSharding
extension

val concertRegion: ActorRef = ClusterSharding(system).shardRegion("Concert")

 concertRegion ! BuyTickets(concertId = 123, user = "Sander", quantity = 1)

Design for event-sourcing

DDD: Domain Driven Design
DDD+CQRS+ES

Aggregate
!

Aggregate
!

Eventual
Consistency

Fully consistent Fully consistent

Root entity

entityentityentity

Root entity

entity entity

DDD: Domain Driven Design
DDD+CQRS+ES

Aggregate
!

Aggregate
!

Eventual
Consistency

Fully consistent Fully consistent

Root entity

entityentityentity

Root entity

entity entity

Persistent
Actor

Persistent
Actor

Message
passing

DDD: Domain Driven Design
DDD+CQRS+ES

Aggregate
!

Aggregate
!

Eventual
Consistency

Fully consistent Fully consistent

Akka Persistence is not a DDD/CQRS framework
But it comes awfully close

Root entity

entityentityentity

Root entity

entity entity

Persistent
Actor

Persistent
Actor

Message
passing

Designing aggregates
Focus on events
Structural representation(s) follow ERD

Designing aggregates
Focus on events
Structural representation(s) follow ERD

Size matters. Faster replay, less write contention
 Don't store derived info (use views)

Designing aggregates
Focus on events
Structural representation(s) follow ERD

Size matters. Faster replay, less write contention
 Don't store derived info (use views)

With CQRS read-your-writes is not the default
When you need this, model it in a single Aggregate

Between aggregates
‣ Send commands to other aggregates by id
!

‣ No distributed transactions
‣ Use business level ack/nacks
‣ SendInvoice -> InvoiceSent/InvoiceCouldNotBeSent
‣ Compensating actions for failure
‣ No guaranteed delivery
‣ Alternative: AtLeastOnceDelivery

Kafka

topic 1 topic 2 derived

Between systems
Application

System integration through event-sourcing

Akka
Persistence

Spark
Streaming

External
Application

Designing commands
‣ Self-contained
‣ Unit of atomic change
‣ Granularity and intent

Designing commands
‣ Self-contained
‣ Unit of atomic change
‣ Granularity and intent

UpdateAddress
street = ...

city = ... vs

ChangeStreet
street = ...

ChangeCity
street = ...

Designing commands
‣ Self-contained
‣ Unit of atomic change
‣ Granularity and intent

UpdateAddress
street = ...

city = ... vs

ChangeStreet
street = ...

ChangeCity
street = ...

Move
street = ...

city = ... vs

Designing events
CreateConcert

Designing events
CreateConcert ConcertCreated

Past tense
Irrefutable

Designing events
CreateConcert ConcertCreated

Past tense
Irrefutable

TicketsBought
newCapacity = 99

Designing events
CreateConcert ConcertCreated

Past tense
Irrefutable

TicketsBought
newCapacity = 99

TicketsBought
quantity = 1

Delta-based
No derived info

Designing events
CreateConcert

ConcertCreated

ConcertCreated
Past tense
Irrefutable

TicketsBought
newCapacity = 99

TicketsBought
quantity = 1

Delta-based
No derived info

Designing events
CreateConcert

ConcertCreated ConcertCreated

who/when/..

Add metadata
to all events

ConcertCreated
Past tense
Irrefutable

TicketsBought
newCapacity = 99

TicketsBought
quantity = 1

Delta-based
No derived info

Versioning

event v1

event v1

event v2

event v2

Actor logic:
v1 and v2

Versioning

event v1

event v1

event v2

event v2

Actor logic:
v1 and v2

event v1

event v1

event v2

event v2

event v2

event v2

Actor logic:
v2

Versioning

event v1

event v1

event v2

event v2

Actor logic:
v1 and v2

event v1

event v1

event v2

event v2

event v2

event v2

Actor logic:
v2

event v1

event v1

event v2

event v2

snapshot

Actor logic:
v2

Versioning

event v1

event v1

event v2

event v2

Actor logic:
v1 and v2

event v1

event v1

event v2

event v2

event v2

event v2

Actor logic:
v2

event v1

event v1

event v2

event v2

snapshot

Actor logic:
v2

‣ Be backwards
compatible

‣ Avro/Protobuf
‣ Serializer can do

translation
!

‣ Snapshot
versioning:
harder

In conclusion
Event-sourcing is...

Powerful

but unfamiliar

In conclusion
Event-sourcing is...

Powerful

but unfamiliar

Combines well with

DDD/CQRS

UI/Client

Command
Model

Journal

Query
Model

DatastoreDatastoreDatastore

Events

In conclusion
Event-sourcing is...

Powerful

but unfamiliar

Combines well with

DDD/CQRS

UI/Client

Command
Model

Journal

Query
Model

DatastoreDatastoreDatastore

Events

Not a

In conclusion
Akka Actors & Akka Persistence

A good fit for
event-sourcing

PersistentActor
actor-id

!
!

!

async message
send
(command)

journal (actor-id)

event
event

state

Experimental, view
improvements needed

Thank you.
!

code @ bit.ly/akka-es

@Sander_Mak
Luminis Technologies

