Toward Low-Latency

Java Applications
JavaOne 2014

. johr? Davies | CTO ”
4/(~ Kirk P ‘Pepperdine | CPC e

e -

Agenda / Notes

® Increasingly Java is being used to build applications that come with

low-latency requirements.
o

® Recent trends in hard performance problems suggest the biggest

challenge is dealing with memory pressure
[

® This session demonstrates the memory cost of using XML
parsers such as SAX and compares that with low-latency
alternatives.

(&

What is Latency n

(& . o

ot

® The measure of time taken to respond to a stimulus

® Mix of active time and dead time
® Active time is when a thread is making forward progress
® Dead time is when a thread is stalled

Total Response Time = Service time + time waiting for service

What is Low Latency? Ny <

® | atency that is not noticeable by a human
® Generally around 50ms
® However missing video sync @ |6.7ms time intervals will cause eye fatigue

s

® | ow latency for trading systems is faster than everyone that else
® Generally a few ms or less
® Generally the time taken to get through a network card

Why Do We Care About Latency & " & /%?

{w B ‘.k \é, }}‘ : h\

® There is no second place in anything that looks like an auction

® | ess latency is perceived as better QoS
® Customers or end users are less likely to abandon

s "l

Where is really matters!!! B A i~

« i

® Front Office - The domain of High Frequency Trading (HFT)

® Very high volume, from 50k-380k / sec
® This is per exchange!

® | atency over |0uS is considered slow
® |OuS is just 3km in speed of light time!

® Fix is a good standard but binary formats like ITCH, OUCH & OMNet are
often better suited

® Much of the data doesn’t even hit the processor. FPGA (Field-Programmable
Gate Arrays), “smart network cards” do a lot of the work

Why it matters & =
e A world where Ims is estimated to be worth over $100m
® For that sort of money you program in whatever they want!

® People who work here are almost super-human, a few make it big but most
don’t make it at all

® There is little place for Java and VM languages here, we need to

move down the stack a little
® We're not going to go here today, it’s a world of customized hardware,
specialist firmware, assembler and C

Sources of Latency

® Some you can rid of, some you can’t
® speed of light
® hardware sharing (schedulers)
® VM safe-pointing
® Application

e All hardware works in blocks of data
® CPU: word size, cache line size, internal buses
® OS: pages
® Network: MTU
® Disk: sector

® |f your data fits into a block things will work well

Sources of Latency (JVM)? D)

® Safe-pointing
® Called for when the JVM has to perform some maintenance
® Parks application threads when the are in a safe harbor
® State and hence calculation they are performing will not be corrupted

® Safe-pointing is called for;
® Garbage Collection
® | ock deflation
® Code cache maintenance
® HotSpot (de-)optimization
[

Puzzler

public void increment() { public synchronized void increment() {
synchronized(this) { i++;
i++: }
}
}

® Which is faster and why!?

Hardware

Memory Controller

P

CPU

Socket 0

OPI

mc‘:

4x DRAM

Socket 1

LI

LI

OPI

H‘T

Moore’s Law

® “The Free Lunch is Over” - Herb Sutter

® Orisit!

) K6

® Martin Thompson’s “Alice in Wonderland” text parsing

Core 2 Duo (2008)

M Operations/sec

Xeon (2010)

i7-2667M (2011)

2800

2100

1400

700

i7-2720QM (2011)

Hardware (bigger picture)

P -

©EngineersGarage

-

Time to Access Data

1 CPU cycle

Level 1 cache access

Level 2 cache access

Level 3 cache access

Main memory access (DRAM)
Solid-state disk 1/0O (flash memory)
Rotational Disk 1/0

Network SF to NY

Network SF to London

Network SF to Oz

TCP packet retransmit

OS virtualization system reboot
SCSI command time-out

Hardware virtualization system reboot

Physical system reboot

0.3 ns
0.9 ns
2.8 ns
12.9 ns
120 ns
50-150 ps
1-10 ms
40 ms
81 ms
183 ms
1-3 s
4s

30 s

40 s
om

2-6 days

1-12 months
4 years

8 years

19 years
105-317 years
423 years

3 millenium

4 millenium
32 millenium

Memory Pressure

® Predictability helps the CPU remain busy
® Java heap is quite often not predictable

156,000
PROLESSOR
l0,0ob e enaeeeerese besseeneseneeyseonen sy ebetesoieyiettitiEeTanstttiLIensLILIsIt NI BanyasLe LSS SO

...............

. Yeane
YTTEN A L EECRT R
'bb eresedteses st tagreettattassantrartieristinittitany e aserarsanesenanens ssqe o

o v ee e MMOK?

IR _

19%0 1985 1990 199 2066 2605 2640

Memory Pressure By

® Rate at which the application churns through memory

Size

requency

Allocation Rates Before &

jClarity censum &

<

TUTOTY OO T OTTITITATy I

FLAGS
@ PrintGCDetails Flag

@ PrintTenuringDistribution Flag
HEAP USAGE
® Memory Utilisation
@ Premature Promotion
@ Memory Pool Sizes
PAUSE TIME
@ High Pause Times
@ GC Throughput
SYSTEM GC
@ Calls to System.gc()
LOG INFORMATION
@ Log duration 23 hours 2 minute
GRAPHS AND DATA
Summary
HEAP USAGE
Heap After GC
Heap Before GC
Aggregate Allocation
Allocation Rate
Heap Recovered
PAUSE TIME
GC Pause Time
% Time in GC
TENURING

1A

Tenuring Summary

¥

Allocation Rate (MBytes/s)

Allocation Rate

Exemplar of high allocation rates

77,100

77,200 77,300 77,400 77,500 77,600 77,700 77,800 77,900 78,000 78,100
Time (seconds)

78,200

78,300

78,400

Memory Layout S e

® Proper memory layouts promotion dead reckoning
® Single fetch to the data
® Single calculation to the next data point
® Processors turn on pre-fetching

® Java Objects form an undisciplined graph

® OORP is pointer to the data
® A field is an OOP

® Two hops to the data
® Most likely cannot dead-reckon to the next value

® Think iterator over a collection

® An array of objects is an array of pointers
e (at least) two hops to the data

Object Layouts

Confidential Information of C24 Technologies Ltd. © 2014 C24 Technologies

Java Memory Layout

® Solution: we need more control over how the JVM lays out
memory

® Risk: if we have more control it’s likely we'll shoot ourselves in the
foot

® One answer: StructuredArray (Gil Tene and Martin Thompson)

What is the problem?

® SDO is a binary codec for XML documents

® Requirement: improve tx to 1,000,000/sec/core

® Problem: allocation rate of |.2GB/sec

e Action: identify loci of object creation and altered application to
break it up

® Result: eliminated ALL object creation. Improved tx rate to
5,000,000/sec/core

We’re
good!!!!!

Memory Footprint of SDO

® SDOs were designed for two main purposes

® Java is in many cases worse than XML for bloating memory usage
for data

® We re-wrote an open source Java Binding tool to create a binary
codec for XML (and other) models

® We can reduce complex XML from 8k (an FpML derivative trade)
and 25k as “classic” bound Java to under 400 bytes

Same API, just binary

® Classic getter and setter vs. binary implementation

e |dentical API

@Override

public Date getTradeDate() {

return tradeDate;

}

@Override
public void setTradeD
this.tradeDate =

}

ate(Date tradeDate) {
tradeDate;

@Override
public Date getTradeDate() {
long date = wordFromBytesFromOffset(8);
date *= 86_400_000L; // milliseconds in a day

return new Date(date);

}

@Override
public void setTradeDate(Date tradeDate) {

long date = tradeDate.getTime();
date /= 86_400_000L; // milliseconds in a day

data[8] = (byte)(date >>> 8);
data[9] = (byte)(date);

C

C24.biz

Just an example... &

@Override

public Date getTradeDate() {
long date = wordFromBytesFromOffset(8);
date *= 86 400 000L; // milliseconds in a day
return new Date(date);

}

@Override
public void setTradeDate(Date tradeDate) {
long date = tradeDate.getTime();
date /= 86_400_000L; // milliseconds in a day

data[8]
data[9]

(byte) (date >>> 8);
(byte) (date);

...............

Did | mention ... The Same API
® This is a key point, we're changing the implementation not the API

® This means that Spring, in-memory caches and other tools work
exactly as they did before

@Override
public Date getTradeDate() {
long date = wordFromBytesFromOffset(8);
date *= 86_400_000L; // milliseconds in a day

return new Date(date);

}

@Override
public void setTradeDate(Date tradeDate) {

long date = tradeDate.getTime();
date /= 86_400_000L; // milliseconds in a day

(byte) (date >>> 8);
(byte) (date);

data[8]
data[9]

Demo

Professor Zapinsky proved that the squid is more intelligent than
the housecat when posed with puzzles under similar conditions

" W | = = —— e = e —

® Professor Zapinsky proved that the squid is
more intelligent than the housecoat when
posed this puzzles under similar conditions

Questions?

b fa
\mew

For more information please contact Kirk Pepperdine (@kcpeppe)
or John Davies (@jtdavies)

Code & more papers will be posted at http://sdo.c24.biz

