
Eager vs. Lazy Loading Strategies
for JPA 2.1

Patrycja Wegrzynowicz

CTO, Yonita, Inc.

About Me

• 15+ professional experience
– Software engineer, architect, head of software R&D

• Author and speaker
– JavaOne, Devoxx, JavaZone, TheServerSide Java

Symposium, Jazoon, OOPSLA, ASE, others

• Finalizing PhD in Computer Science
• Founder and CTO of Yonita

– Bridge the gap between the industry and the academia
– Automated detection and refactoring of software

defectsSecurity, performance, concurrency, databases

• @yonlabs

Agenda

• My dear JPA 

• Loading strategies hints

• Corner cases

• Conclusions

I do love JPA!

I do love JPA!

But as in every relationship we have
our ups and downs.

My Dear JPA and Its Providers 

My Dear JPA and Its Providers 

My Dear JPA and Its Providers 

Hibernate JPA Provider
Heads of Hydra

@Entity

public class Hydra {
private Long id;

private List<Head> heads = new ArrayList<Head>();

@Id @GeneratedValue

public Long getId() {...}

protected void setId() {...}

@OneToMany(cascade=CascadeType.ALL)

public List<Head> getHeads() {
return Collections.unmodifiableList(heads);

}

protected void setHeads() {...}

}

// new EntityManager and new transaction: creates and persists the hydra with 3 heads

// new EntityManager and new transaction

Hydra found = em.find(Hydra.class, hydra.getId());

How Many Queries in 2nd Tx?

@Entity

public class Hydra {
private Long id;

private List<Head> heads = new ArrayList<Head>();

@Id @GeneratedValue

public Long getId() {...}

protected void setId() {...}

@OneToMany(cascade=CascadeType.ALL)

public List<Head> getHeads() {
return Collections.unmodifiableList(heads);

}

protected void setHeads() {...}

}

// new EntityManager and new transaction: creates and persists the hydra with 3 heads

// new EntityManager and new transaction

Hydra found = em.find(Hydra.class, hydra.getId());

(a) 1 select
(b) 2 selects
(c) 1+3 selects
(d) 2 selects, 1 delete, 3
inserts
(e) None of the above

How Many Queries in 2nd Tx?

(a) 1 select
(b) 2 selects
(c) 1+3 selects
(d) 2 selects, 1 delete, 3 inserts
(e) None of the above

During commit hibernate checks whether the
collection property is dirty (needs to be re-created)
by comparing Java identities (object references).

Another Look

@Entity

public class Hydra {
private Long id;

private List<Head> heads = new ArrayList<Head>();

@Id @GeneratedValue

public Long getId() {...}

protected void setId() {...}

@OneToMany(cascade=CascadeType.ALL)

public List<Head> getHeads() {
return Collections.unmodifiableList(heads);

}

protected void setHeads() {...}

}

// new EntityManager and new transaction: creates and persists the hydra with 3 heads

// new EntityManager and new transaction

// during find only 1 select (hydra)

Hydra found = em.find(Hydra.class, hydra.getId());

// during commit 1 select (heads),1 delete (heads),3 inserts (heads)

Lessons Learned

• Expect unexpected ;-)

• Prefer field access mappings

• Operate on collection objects returned by
hibernate

–Don’t change collection references unless you know
what you’re doing

Lessons Learned

• Expect unexpected ;-)

• Prefer field access mappings

• Operate on collection objects returned by
hibernate

–Don’t change collection references unless you know
what you’re doing

 List<Head> newHeads = new List<>(hydra.getHeads());

 Hydra.setHeads(newHeads);

Other Providers?

• EcpliseLink

– 1 select

• Datanucleus

– 1 select

• „A Performance Comparison of JPA Providers”

Lessons Learned

• A lot of depends on a JPA Provider!

• JPA is a spec

– A great spec, but only a spec

– It says what to implement, not how to implement

• You need to tune an application in a concrete
environment

Loading Strategy: EAGER for sure!

• We know what we want

– Known range of required data in a future
execution path

• We want a little

– A relatively small entity, no need to divide it into
tiny pieces

Loading strategy: Usually Better
EAGER!

• Network latency to a database

– Lower number of round-trips to a database with
EAGER loading

Loading Strategy: LAZY for sure!

• We don’t know what we want

– Load only required data

– „I’ll think about that tomorrow”

• We want a lot

– Divide and conquer

– Load what’s needed in the first place

Large Objects

• Lazy Property Fetching

• @Basic(fetch = FetchType.LAZY)

• Recommended usage
– Blobs

– Clobs

– Formulas

• Remember about byte-code instrumentation,
– Otherwise will not work

– Silently ignores

Large Objects

• Lazy Property Fetching

• @Basic(fetch = FetchType.LAZY)

• Recommended usage
– Blobs

– Clobs

– Formulas

• Remember about byte-code instrumentation,
– Otherwise will not work

– Silently ignores

Large Objects

• Something smells here

• Do you really need them?

Large Objects

• Something smells here

• Do you really need them?

• But do you really need them?

Large Objects

• Something smells here

• Do you really need them?

• But do you really need them?

• Ponder on your object model and use cases,
otherwise it’s not gonna work

Large Collections

• Divide and conquer!

• Definitely lazy

• You don’t want a really large collection in the
memory

• Batch size

– JPA Provider specific configuration

Hibernate: Plant a Tree

@Entity

public class Forest {
 @Id @GeneratedValue

private Long id;

@OneToMany

private Collection<Tree> trees = new HashSet<Tree>();

public void plantTree(Tree tree) {
return trees.add(tree);

}

}

// new EntityManager and new transaction: creates and persists a forest with 10.000 trees

// new EntityManager and new transaction

Tree tree = new Tree(“oak”);

em.persist(tree);

Forest forest = em.find(Forest.class, id);

forest.plantTree(tree);

How Many Queries in 2nd Tx?

@Entity

public class Forest {
 @Id @GeneratedValue

private Long id;

@OneToMany

private Collection<Tree> trees = new HashSet<Tree>();

public void plantTree(Tree tree) {
return trees.add(tree);

}

}

// new EntityManager and new transaction: creates and persists a forest with 10.000 trees

// new EntityManager and new transaction

Tree tree = new Tree(“oak”);

em.persist(tree);

Forest forest = em.find(Forest.class, id);

forest.plantTree(tree);

(a) 1 select, 2 inserts

(b) 2 selects, 2 inserts

(c) 2 selects, 1 delete,

10.000+2 inserts

(d) 2 selects, 10.000

deletes, 10.000+2 inserts

(e) Even more ;-)

How Many Queries in 2nd Tx?

(a) 1 select, 2 inserts

(b) 2 selects, 2 inserts

(c) 2 selects, 1 delete, 10.000+2 inserts

(d) 2 selects, 10.000 deletes, 10.000+2 inserts

(e) Even more ;-)

The combination of OneToMany and Collection
enables a bag semantic. That’s why the collection is
re-created.

Plant a Tree Revisited

@Entity

public class Orchard {
 @Id @GeneratedValue

private Long id;

@OneToMany

private List<Tree> trees = new ArrayList<Tree>();

public void plantTree(Tree tree) {
return trees.add(tree);

}

}

// creates and persists a forest with 10.000 trees

// new EntityManager and new transaction

Tree tree = new Tree(“apple tree”);

em.persist(tree);

Orchard orchard = em.find(Orchard.class, id);

orchard.plantTree(tree);

STILL BAG SEMANTIC

Use OrderColumn or

IndexColumn for list

semantic.

Plant a Tree

@Entity

public class Forest {
 @Id @GeneratedValue

private Long id;

@OneToMany

private Set<Tree> trees = new HashSet<Tree>();

public void plantTree(Tree tree) {
return trees.add(tree);

}

}

// new EntityManager and new transaction: creates and persists a forest with 10.000 trees

// new EntityManager and new transaction

Tree tree = new Tree(“oak”);

em.persist(tree);

Forest forest = em.find(Forest.class, id);

forest.plantTree(tree);

1. Collection elements
loaded into memory

2. Possibly unnecessary
queries

3. Transaction and locking
schema problems:
version, optimistic
locking

Plant a Tree

@Entity public class Forest {
 @Id @GeneratedValue

private Long id;

@OneToMany(mappedBy = „forest”)

private Set<Tree> trees = new HashSet<Tree>();

public void plantTree(Tree tree) {
return trees.add(tree);

}

}

@Entity public class Tree {
@Id @GeneratedValue

private Long id;

private String name;

@ManyToOne

private Forest forest;

public void setForest(Forest forest) {
this.forest = forest;

Forest.plantTree(this);

}

}

Set semantic on the

inverse side forces of

loading all trees.

Other Providers?

• EclipseLink

– 2 selects/2 inserts

• OpenJPA

• 3 selects/1 update/2inserts

• Datanucleus

• 3 selects/1 update/2inserts

Loading strategy: It depends!

• You know what you want

– But it’s dynamic, depending on an execution path
and its parameters

Loading strategy: It depends!

• You know what you want

– But it’s dynamic, depending on runtime
parameters

• That was the problem in JPA 2.0

– Fetch queries

– Provider specific extensions

– Different mappings for different cases

• JPA 2.1 comes in handy

Entity Graphs in JPA 2.1

• „A template that captures the paths and
boundaries for an operation or query”

• Fetch plans for query or find operations

• Defined by annotations

• Created programmatically

Entity Graphs in JPA 2.1

• Defined by annotations

– @NamedEntityGraph, @NamedEntitySubgraph,
@NamedAttributeNode

• Created programmatically

– Interfaces EntityGraph, EntitySubgraph,
AttributeNode

Entity Graphs in Query or Find

• Default fetch graph
– Transitive closure of all its attributes specified or

defaulted as EAGER

• javax.persistence.fetchgraph
– Attributes specified by attribute nodes are EAGER,

others are LAZY

• javax.persistence.loadgraph
– Attributes specified by by attribute nodes are

EAGER, others as specified or defaulted

Entity Graphs in Query or Find

• Default fetch graph
– Transitive closure of all its attributes specified or

defaulted as EAGER

• javax.persistence.fetchgraph
– Attributes specified by attribute nodes are EAGER,

others are LAZY

• javax.persistence.loadgraph
– Attributes specified by by attribute nodes are

EAGER, others as specified or defaulted

Entity Graphs in Query or Find

• Default fetch graph
– Transitive closure of all its attributes specified or

defaulted as EAGER

• javax.persistence.fetchgraph
– Attributes specified by attribute nodes are EAGER,

others are LAZY

• javax.persistence.loadgraph
– Attributes specified by by attribute nodes are

EAGER, others as specified or defaulted

Entity Graphs Advantages

• Better hints to JPA providers

• Hibernate now generates smarter queries

– 1 select with joins on 3 tables

– 1 round-trip to a database instead of default N+1

• Dynamic modification of a fetch plan

There is that question...

Conclusions

• Keep your model neat

• Apply hints on loading strategies

– Especially use JPA 2.1 Entity Graphs

• In case of perfomance problems

– Tune in your concrete environment

– JPA Providers behave differently!

– Databases behave differently!

Q&A

patrycja@yonita.com

 @yonlabs

