
Simon Elliston Ball
Head of Big Data
!

@sireb
!

When to NoSQL and When !
to Know SQL

#noSQLknowSQL

http://nosqlknowsql.io

http://nosqlknowsql.io

Not only SQL

SQL

what is NoSQL?

Many many things

NoSQL

No, SQL

files

before SQL

multi-value

ur… hash maps?

everything is relational

after SQL

ORMs fill in the other data structures

scale up rules

data first design

datastores that suit applications

and now NoSQL

polyglot persistence: the right tools

scale out rules

APIs not EDWs

data growth

why should you care?

machine learning

social

rapid development

fewer migration headaches… maybe

big bucks.

9. Salary figures are for US respondents only.

number of tools. Median base salary is constant at $100k for those
using up to 10 tools, but increases with new tools after that.9

Given the two patterns we have just examined—the relationships be‐
tween cluster tools and respondents’ overall tool counts, and between
tool counts and salary—it should not be surprising that there is a sig‐
nificant difference in how each cluster correlates with salary. Using
more tools from the Hadoop cluster correlates positively with salary,
while using more tools from the SQL/Excel cluster correlates (slightly)
negatively with salary.

12 | 2013 Data Science Salary Survey

O’Reilly 2013 Data Science Salary Survey

So many NoSQLs…

document databases

document databases

known access pattern

JSON docs

complex, variable models

rapid development

document databases

JUST DON’Tjoins?

learn a very new query language

denormalize

http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/

document form

http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/

document vs SQL
what can SQL do?

query all the angles

sure, you can use blobs…

… but you can’t get into them

documents in SQL
SQL xml fields

mapping xquery paths is painful

native JSON

but still structured

class of database database

query everything: search

full-text indexing

range query

you know google, right…

span query

keyword query

scores

you know the score
"query": {
 "function_score": {
 "query": {
 "match": { "title": "NoSQL"}
 },
 "functions": [
 "boost": 1,
 "gauss": {
 "timestamp": {
 "scale": "4w"
 }
 },
 "script_score" : {
 "script" : "_score * doc['important_document'].value ? 2 : 1"
 }
],
 "score_mode": "sum"
 }
}

scores

SQL knows the score too
declare @origin float = 0;
declare @delay_weeks float = 4;
!
SELECT TOP 10 * FROM (
 SELECT title,
 score *
 CASE
 WHEN p.important = 1 THEN 2.0
 WHEN p.important = 0 THEN 1.0
 END
 * exp(-power(timestamp-@origin,2)/(2*@delay*7*24*3600))
 + 1
 AS score
 FROM posts p
 WHERE title LIKE '%NoSQL%'
) as found
ORDER BY score

more like this: instant tf-idf

you know google, right…

{
 "more_like_this" : {
 "fields" : ["name.first", "name.last"],
 "like_text" : "text like this one",
 "min_term_freq" : 1,
 "max_query_terms" : 12
 }
}

Facets

Facets

Facets
SQL:

x lots

SELECT a.name, count(p.id) FROM
 people p
 JOIN industry a on a.id = p.industry_id
 JOIN people_keywords pk on pk.person_id = p.id
 JOIN keywords k on k.id = pk.keyword_id
WHERE CONTAINS(p.description, 'NoSQL')
 OR k.name = 'NoSQL'
 ...
GROUP BY a.name

SELECT a.name, count(p.id) FROM
 people p
 JOIN area a on a.id = p.area_id
 JOIN people_keywords pk on pk.person_id = p.id
 JOIN keywords k on k.id = pk.keyword_id
WHERE CONTAINS(p.description, 'NoSQL')
 OR k.name = 'NoSQL'
 ...
GROUP BY a.name

Facets
Elastic search:
{
 "query": {
 “query_string": {
 “default_field”: “content”,
 “query”: “keywords”
 }
 },
 "facets": {
 “myTerms": {
 "terms": {
 "field" : "lang",
 "all_terms" : true
 }
 }
 }
}

untyped free-text documents

logs

timestamped

semi-structured

discovery

aggregation and statistics

close to your programming model

key: value

distributed map | list | set

keys can be objects

hash types

SQL extensions

hstore

inheritance

SQL and polymorphism

ORMs hide the horror

columnar databases

turning round the rows

physical layout matters

turning round the rows
key! value type

1 A Home
2 B Work
3 C Work
4 D Work

00001 1 A Home 00002 2 B Work 00003 3 C Work …

Row storage

A B C D Home Work Work Work …

Column storage

teaching an old SQL new tricks
MySQL InfoBright

SQL Server Columnar Indexes
CREATE NONCLUSTERED COLUMNSTORE INDEX idx_col
ON Orders (OrderDate, DueDate, ShipDate)

Great for your data warehouse, but no use for OLTP

Parquet

ORC files

column for hadoop and other animals

http://parquet.io

http://parquet.io

wide column databases

column families

millions of columns

eventually consistent

CQL

http://cassandra.apache.org/

http://www.datastax.com/

set | list | map types

http://cassandra.apache.org/
http://www.datastax.com/

SQL: so many views, so much confusion

cell level security

accumulo https://accumulo.apache.org/

Ti
m

e
se

rie
s

time
retrieving time series and graphs

window functions
SELECT business_date, ticker,
 close,
 close /
 LAG(close,1) OVER (PARTITION BY ticker ORDER BY business_date ASC)
 - 1 AS ret
FROM sp500

Queues

CREATE procedure [dbo].[Dequeue]
AS
!
set nocount on
!
declare @BatchSize int
set @BatchSize = 10
!
declare @Batch table (QueueID int, QueueDateTime datetime, Title nvarchar(255))
!
begin tran
!
insert into @Batch
select Top (@BatchSize) QueueID, QueueDateTime, Title from QueueMeta
WITH (UPDLOCK, HOLDLOCK)
where Status = 0
order by QueueDateTime ASC
!
declare @ItemsToUpdate int
set @ItemsToUpdate = @@ROWCOUNT
!
update QueueMeta
SET Status = 1
WHERE QueueID IN (select QueueID from @Batch)
AND Status = 0
!
if @@ROWCOUNT = @ItemsToUpdate
begin
 commit tran
 select b.*, q.TextData from @Batch b
 inner join QueueData q on q.QueueID = b.QueueID
 print 'SUCCESS'
end
else
begin
 rollback tran
 print 'FAILED'
end

queues in SQL

index fragmentation is a problem

queues in SQL

but built in logs of a sort

specialised apis

message queues

capabilities like fan-out

routing

acknowledgement

relationships count
Graph databases

relationships count
trees and hierarchies

overloaded relationships

fancy algorithms

hierarchies with SQL
adjacency lists

nested sets (MPTT)

materialised path

CONSTRAIN fk_parent_id_id
FOREIGN KEY parent_id REFERENCES some_table.id

path = 1.2.23.55.786.33425

Node Left Right Depth
A 1 22 1
B 2 9 2
C 10 21 2
D 3 4 3
E 5 6 3
F 7 8 3
G 11 18 3
H 19 20 3
I 12 13 4
J 14 15 4
K 16 17 4

Velocity

https://www.flickr.com/photos/jiteshjagadish

https://www.flickr.com/photos/jiteshjagadish

Don’t get ACID on the cuts

when locks attack…

Big Data

SQL on Hadoop

Shark

More than SQL

Drill

Cascading

Map Reduce

System issues, !
Speed issues,!
Soft issues

Atomic

the ACID, BASE litmus

Consistent

Isolated

Durable

Basically Available

Soft-state

Eventually consistent

what matters to you?

CAP it all

Consistency

AvailabilityPartition

SQL writes cost a lot

write fast, ask questions later

mainly write workload: NoSQL

low latency write workload: NoSQL

most NoSQL scales well

is it web scale?

but clusters still need management

are you facebook? one machine is easier than n

can ops handle it? app developers make bad admins

analysts: they want SQL

who is going to use it?

developers: they want applications

data scientists: they want access

choose the !
right tool

Photo: http://www.homespothq.com/

http://www.homespothq.com/

Simon Elliston Ball
simon@simonellistonball.com
!

@sireb

Thank you!

http://nosqlknowsql.io

#noSQLknowSQL

http://nosqlknowsql.io

Simon Elliston Ball
simon@simonellistonball.com
!

@sireb

Questions

http://nosqlknowsql.io

http://nosqlknowsql.io

