
Java EE 7 Recipes
Presented By: Josh Juneau	

Author and Application Developer	

About Me
Josh Juneau	

Day Job: Developer and DBA @ Fermilab	

Night/Weekend Job: Technical Writer	

 - Java Magazine and OTN	

 - Java EE 7 Recipes	

 - Introducing Java EE 7	

 - Java 8 Recipes	

JSF 2.3 EG	

Twitter: @javajuneau

Agenda

Resolve a series of real life scenarios using the
features of Java EE 7. We will cover recipes
that span across most of the Java EE
specifications…

Before we start. . .

Old: J2EE	

Modern: Java EE

Java EE of the Past
Difficult to Use Configuration

Verbose

Few Standards

Progressive
Improvements

More Productive

Less Configuration

More Standards

Java EE 7 Increases
Productivity Even More

and Introduces
Standards for Building
Modern Applications

Java EE 7 Increases
Productivity

• CDI Everywhere	

• JAX-RS Client API, Async Processing	

• Bean Validation in EJBs and POJOs	

• JSF Flows	

• JMS 2.0 - Much Less Code

Java EE 7 Introduces
Standards

• WebSockets	

• JSON-P	

• Batch API	

• Concurrency Utilities for Java EE

Recipes!	

Lots to cover…

Recipes!
Statement for Completeness: 	

!

Recipes are not meant to provide comprehensive coverage
of the features. Rather, they are meant to get you up and
running with the new functionality quickly, providing the

details you need to know. To learn more details on any of
the features covered, please refer to the online

documentation.	

!

Let’s Cook!

JSF
• New features added in JSF 2.2, adding more flexibility	

• Faces Flows	

• Resource Library Contracts	

• HTML5 Support	

• File Upload Component	

• View Actions	

• Much More

Problem #1

You would like to invoke an action method
the first time a particular view is loaded.
Furthermore, you would like to perform
navigation with the results of this method
invocation.

Solution

Utilize a ViewAction, which will be invoked
on the initial request by default.

How it Works
Load a view that contains the ViewAction metadata tag

Specify the viewAction tag, within your JSF view as a child
of <f:metadata>

How it Works
Write the action method which is invoked via the

ViewAction

By default, the view is loaded after the action has been
invoked

How it Works

• Call actions on GET requests	

• Specify the action to be invoked using the action
attribute.	

• View Actions do not operate on postback, by
default (initial request), since they are commonly
used in the initial view request…as in the example.
Can be altered via the onPostback attribute.

How it Works

!

• Invoked in the INVOKE_APPLICATION phase by
default, configurable via the viewAction tag phase
attribute	

• The return value of viewAction method can be a
navigational response since view actions always
force a redirect response.

Problem #2

You wish to provide the ability to change
your application look and feel based upon
the different user privileges. For instance,
administrators should have a green
background, and users should see
AcmeWorld blue.

Solution

Utilize JSF Resource Library Contracts to
apply different theming across the various
portions of your application, as needed.

Solution
Create a folder named “contracts”
within the root of the web application,
and then create separate folders for
each contract. Place the applicable CSS
files into each contract folder, along with
a template file for each contract.

Solution
Add a <resource-library-contracts>
element to the faces-config.xml file, and
add a <contract-mapping> for each
contract, along with a url pattern to map
with each contract.

Solution

Modify each view to include the
template, and faces will load the
template corresponding to the contract
specified in the faces-config.

How it Works

JSF 2.2 adds the ability to specify a different
look and feel (contract) for different parts
of one or more application.	

!

Contracts should be placed into a
directory named “contracts”, located at
the root of the web directory.

How it Works
• Resources such as CSS, JS, template files, and

images reside within the individual contract
folders.	

• Resource library contracts can be packaged
into JAR files for use within different
applications. 	

• Contracts placed within META-INF/
contracts	

• JAR placed within WEB-INF/lib 	

	

Problem #3

You are interested in mixing HTML5 and
JSF components within the same
application. In this example, we wish to
create a user entry form with HTML5
elements wired to JSF managed beans.
We’ll also create a JSF view that utilizes
HTML5 attributes within the JSF
components.	

Solution
Take advantage of the seamless HTML5
support that is offered by JSF 2.2+.	

Create HTML5 forms that work seamlessly
with the JSF Lifecycle.	

Using HTML5 markup, specify JSF
passthrough elements to access the JSF
runtime.	

!

Solution
Create JSF forms, providing HTML5 attribute
specification on JSF components via passthrough.
In some cases, we might wish to use JSF
components, but enhance them by specifying
attributes that are available for use only via the
component’s HTML5 counterpart.	

Use pass-through attributes to specify attributes
on JSF components that should be ignored by
the JSF runtime.

Solution

How it Works

• To get started using HTML5 elements with JSF, add
the jsf namespace for the pass-through elements
to the page. The namespace can be added to any
HTML5 element attribute, allowing that element
to be processed by the JSF runtime.	

!

• To be treated as a JSF component, at least one
element must contain the jsf pass-through
namespace

How it Works
Pass-through attributes are the converse of pass-
through elements: a pass-through attribute is
applied to a JSF component to signify that the
specified attribute should be ignored by the JSF
runtime and passed directly through to the
browser.	

A single passthrough attribute can be specified
by nesting f:passThroughAttribute in a JSF
component, or multiple attributes can be
specified by nesting f:passThroughAttributes.

How it Works

Bean Validation

New Features in Bean Validation 1.1:	

• Method Validation	

• EL Expressions in Error Messages	

• Dependency Injection of Bean Validation Components	

• Integration with CDI	

• Group Conversion	

Problem #4

You wish to apply server side validation for
an entity bean, such that the validation will
be applied when a user is entering data
into a form to populate the fields of that
bean.

Solution
Apply the necessary bean validation
constraints via the use of annotations on
the fields of the entity class.	

!

!

How it Works
•Place	 valida+on	 constraint	 annota+ons	 on	 a	 field,	
method,	 or	 class	 such	 as	 a	 JSF	 managed	 bean	 or	 en+ty	
class.	

•When	 the	 JSF	 Process	 Valida+ons	 phase	 occurs,	 the	
value	 that	 was	 entered	 by	 the	 user	 will	 be	 validated	
based	 upon	 the	 specified	 valida+on	 criteria.	 At	 this	
point,	 if	 the	 valida+on	 fails,	 the	 Render	 Response	 phase	
is	 executed,	 and	 an	 appropriate	 error	 message	 is	 added	
to	 the	 FacesContext.	 However,	 if	 the	 valida+on	 is	
successful,	 then	 the	 life	 cycle	 con+nues	 normally.	
!

•Specify	 a	 valida+on	 error	 message	 using	 the	 message	
aFribute	 within	 the	 constraint	 annota+on	

Problem #5

You	 would	 like	 to	 validate	 a	 method’s	
parameters	 or	 return	 value	 without	 wri+ng	
an	 extra	 layer	 of	 code

Solution

Take	 advantage	 of	 method	 valida+on,	
available	 as	 of	 Bean	 Valida+on	 1.1,	 and	
apply	 constraints	 to	 parameters	 or	 return	
values.

Solution
Parameter Constraints

Solution
Return Value Constraint

How it Works
• Bean	 valida+on	 constraints	 can	 be	 placed	

on	 non-‐sta+c	 methods	 and	 constructors,	
and	 on	 the	 return	 values	 of	 non-‐sta+c	
methods	

• To	 validate	 parameters	 for	 a	 method,	
constraint	 annota+ons	 can	 be	 placed	
directly	 on	 each	 parameter.	 	

• If	 method	 valida+on	 fails,	 a	
ConstraintValida,onExcep,on	 is	 thrown

How it Works
• It	 is	 possible	 to	 specify	 a	 constraint	 that	 applies	 to	

more	 than	 one	 parameter	 of	 a	 method,	 this	 is	
known	 as	 a	 cross-‐parameter	 constraint.	 	 Such	
constraints	 are	 applied	 at	 the	 method	 or	
constructor	 level.	

• Constraint	 annota+ons	 that	 are	 placed	 on	 a	
method	 can	 also	 be	 used	 to	 validate	 the	 return	
value	 of	 that	 method.	

• The	 valida,onAppliesTo	 element	 of	 the	 constraint	
annota+on	 signifies	 the	 constraint	 target	
(ConstraintTarget.RETURN_VALUE	 or	
ConstraintTarget.PARAMETERS).

Problem #6

You	 would	 like	 to	 display	 the	 currently	
entered	 value	 within	 the	 bean	 valida+on	
error	 message.

Solution

Include	 the	 current	 value	 using	 expression	 language	
within	 the	 bean	 valida+on	 error	 message.	

How it Works

• The	 current	 value	 can	 be	 embedded	 into	
the	 error	 message	 using	 the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
${validatedValue}	 expression.	

• Condi+onal	 logic	 with	 EL	 expression	 is	
possible	 in	 error	 messages.	

• The	 valida+on	 engine	 makes	 formaFer	
object	 available	 in	 the	 EL	 context	 (date	
formaXng	 etc.)

CDI
• Improved alignment of JSF Component Model/

Scoping to CDI	

• CDI Enabled By Default	

• Add support for @AroundConstruct lifecycle
callback for constructors	

• Specify @Priority on interceptor binding	

• Add event metadata	

• Apply @Vetoed to ignore classes	

• More…

Problem #7

You would like to access the a JSF Managed
bean from within another JSF Managed bean.
CDI 1.0 Recipe…	

In this case, we want to check to ensure that
a customer has booked a mandatory
restaurant reservation with their park
reservation.

Solution

Simply inject the resource into the managed
bean of your choice. CDI can be used
almost everywhere in Java EE 7 by default.

Solution

How it Works

CDI enabled by default, no need to include a
beans.xml with your application.	

• If no beans.xml is specified, the bean-discovery-mode
attribute is set to ‘annotated’ is assumed	

• Possible values for bean-discovery-mode are:	

all, annotated, none

How it Works

As of Java EE 6, Managed beans can be
annotated with @Named, and then injected
into other CDI beans.	

@ManagedBean and the javax.faces.bean
scopes will be deprecated in a future release of
Java EE, so @Named and the
javax.enterprise.context scopes should be used
instead.

Problem #8

You wish to mark a specific class as ignored
by CDI.	

We do not wish to have the entity classes of
AcmeWorld managed by CDI.

Solution

Annotate the class with @Vetoed	

How it Works
• Marking a class with @Vetoed, means that

it will be ignored by CDI. In other words,
CDI will not process the class. 	

• The class will not be injectable.	

• The class will not contain the life cycle of a
contextual instance.	

• When placed on package, all beans in the
package are prevented from being managed.

Problem #9
You wish to specify the ordering of Interceptor bindings

within an application. 	

!

In the AcmeWorld application, we have two interceptor
classes (auditing reservation changes, logging new

reservations), each with their own binding. We wish to
prioritize these interceptor bindings such that the new

reservation logging is ordered first.

Solution

Specify a priority for each interceptor binding using the
@Priority annotation.

How it Works

@Priority can be used to specify the ordering of
Interceptors, Decorators, and Alternatives.	

!

The @Priority annotation requires an int value as an
element. The lower the number, the higher the priority of

the associated interceptor.

How it Works
Interceptor.Priority contains the following priority values:	

!

APPLICATION (value 2000)	

LIBRARY_AFTER (value 3000)	

LIBRARY_BEFORE (value 1000)	

PLATFORM_AFTER (value 4000)	

PLATFORM_BEFORE (value 0)

Concurrency Utilities
for Java EE

• Now we have a standard for developing
multi-threaded and concurrent applications
for the enterprise	

• Built upon the Java SE java.util.concurrency
classes foundation

Problem #10

You would like execute a process in the
background while allowing the user to
continue performing other tasks. 	

For instance, we wish to have the
AcmeWorld application allow managers the
ability to click a button to have the details of
their all reservations sent to them, while the
manager continues to navigate the site.

Solution

When the user clicks the button, send the
task to a ManagedExecutorService on the
application server for processing, and allow
the user to continue their work.

Solution

How it Works

• In Java SE 5, the java.util.concurrent package was
introduced, providing a convenient and standard
way to manage threads within Java SE applications	

• The Concurrency Utilities for Java EE extends upon
the SE implementation, making the concurrent
resource injectable and placing the resources in the
application server container	

• All Java EE 7 Compliant Application Servers must
contain default concurrent resources, in GlassFish
these resources begin with _default, e.g:
_defaultManagedExecutorService

How it Works

• Concurrency Utilities relies on JTA to maintain
transaction boundaries	

• Access a Concurrent Resource via JNDI lookup or
Injection:	

InitialContext ctx = new InitialContext();	

ManagedExecutorService executor =
(ManagedExecutorService)ctx.lookup("java:comp/DefaultManagedExecutorService");

How it Works

• A “Task” is a unit of work that needs to be executed in a
concurrent manner	

• Tasks must implement either java.lang.Runnable or
java.util.concurrent.Callable, and optionally ManagedTask	

• Tasks run within the same context of the component that
submits the task	

• To submit an individual task to a ManagedExecutorService, use
the submit method to return a Future object	

• To submit an individual task for execution at an arbitrary
point, use the execute method

How it Works

Problem #11

You are interested in spawning a thread to
periodically execute a task in the background. 	

!

We wish to be alerted whenever a new
reservation is placed, so we want to execute
an alerter task in the background.

Solution

Spawn a server managed thread by passing a
task via a ManagedThreadFactory.

Solution

How it Works

• A server managed Thread runs the same as
any standard Thread...but in a managed
fashion	

• Thread class must implement Runnable	

• Context can be passed to the Thread

EJB
• Transactional lifecycle callbacks in session

beans can be opt-in	

• Optional Passivation	

• Explicit specification of remote or local
interfaces	

• Extended TimerService API	

• JMS Alignment	

• More…

Problem #12

You wish to mark the @PostConstuct and
@PreDestroy lifecycle callback methods as
transactional.	

!

We want to start a new transaction when a
reservation booking change is invoked by a
user.

Solution

Opt into the transactional lifecycle callback by
annotating the method with
@TransactionAttribute	

!

How it Works

By default, stateful session bean lifecycle
callback methods are opt-in transactional. 	

!

The Lifecycle Callbacks will use the bean
transaction management type, or use
@TransactionAttribute to denote the
Transaction Attribute Type.	

How it Works

TransactionalAttribute Values:	

	
 MANDATORY	

 NOT_SUPPORTED	

	
 REQUIRED	

	
 REQUIRES_NEW	

	
 SUPPORTED	

Problem #13

You wish to return information about all active
timers in your application. 	

In AcmeWorld, an active timer sends
notifications to reservation holders that have
not yet booked an obligatory restaurant
reservation.

Solution

Call upon the TimerService getAllTimers()
method to return a Collection of active Timer
instances.	

How it Works

TimerService.getAllTimers is a newly added convenience
API that returns all active timers associated with the beans
in the same module in which the caller bean is packaged.	

!

Includes both the programmatically-created timers and the
automatically-created timers.

JPA
New Features in JPA 2.1:	

• Stored Procedure support	

• Custom Converters	

• Schema Generation	

• Unsynchronized Persistence Contexts	

• More…	

Problem #14

You wish to call upon a database stored
procedure to perform a task within the
database.	

There is a database procedure that is used to
create users within the Acme database
(CREATE_USER).

Solution
Utilize the new StoredProcedureQuery to
invoke the stored procedure. Utilize the
EntityManager’s createStoredProcedureQuery
to invoke the stored procedure.

Solution
Register any parameters by invoking the
StoredProcedureQuery
registerStoredProcedureParameter method and
passing the required values.

Invoke the stored procedure by invoking the execute()
method.

How it Works
In the past, we had to implement “hacks” to call
native stored procedures, was also difficult to return
values from stored procedures.	

Invoke EntityManager’s
createNamedStoredProcedure or
createStoredProcedure method, passing the string-
based name of the stored procedure. 	

StoredProcedureQuery instance returned, which can
be used to register parameters.	

Invoke via StoredProcedureQuery execute()

How it Works

To return a value execute the stored procedure and
then call upon its getOutputParameterValue()
method.	

For convenience, stored procedure can be registered
on an Entity class via the
@NamedStoredProcedureQuery.	

!

Problem #15

You wish to invoke some lifecycle callback methods
to perform some additional tasks when a
ParkReservation is created. We also wish to inject
resources into the callback listener classes.

Solution
Create an Entity Listener, and perform the task using
one of the life cycle callback methods: @PrePersist,
@PostPersist, @PreUpdate, @PreRemove. Utilize
CDI resources within the listener.	

!

!

!

How it Works

Life cycle callback implementations get even easier,
as we can now use CDI injection within entity
listeners.

JSON-P

The Java API for JSON Processing is a new
standard for generation and processing of
JavaScript Object Notation data.	

JSON-P provides an API to parse, transform, and
query JSON data using the object model or the
streaming model.	

JSON is often used as a common format to
serialize and deserialize data in applications that
communicate with each other over the Internet.

JSON-P

The javax.json package contains a reader interface,
a writer interface, and a model builder interface
for the object model. 	

!

The javax.json.stream package contains a parser
interface and a generator interface for the
streaming model.

JSON-P

Object Model API: Like DOM API, Object Model
API uses builder pattern to model JSON objects
as a tree structure to represent data in memory.
The model provides the JsonReader interface for
consuming JSON objects and JsonObjectBuilder
and JsonArrayBuilder to produce JSON objects.

JSON-P

Streaming API: This API is similar to SAX API for
XML and used for parsing JSON text in a
streaming fashion. Low level and event-based.
Less memory intensive, and therefore more
suitable for processing larger amounts of data.

Problem #16

You would like to build a JSON object model
using Java code.	

!

We wish to create a list of current reservations
using JSON-P.

Solution

Utilize JSON Processing for the Java EE
Platform to build a JSON object model
containing all of the current reservations.

Solution

How it Works

!

JSON defines only two data structures: objects
and arrays. An object is a set of name-value
pairs, and an array is a list of values. JSON
defines seven value types: string, number, object,
array, true, false, and null.	

How it Works
Java EE includes support for JSR 353, which
provides an API to parse, transform, and query
JSON data using the object model or the
streaming model	

Make use of JsonObjectBuilder to build a JSON
object using the builder pattern.	

Call upon the Json.createObjectBuilder()
method to create a JsonObjectBuilder.

How it Works

Utilize the builder pattern to build the object
model by nesting calls to the JsonObjectBuilder
add() method, passing name/value pairs.

How it Works

It is possible to nest objects and arrays.	

The JsonArrayBuilder class contains similar add
methods that do not have a name (key) parameter.
You can nest arrays and objects by passing a new
JsonArrayBuilder object or a new JsonObjectBuilder
object to the corresponding add method.	

!

Invoke the build() method to create the object.

Problem #17

You’ve generated a JSON Object Model, now
you wish to write it to a file.

Solution

Write a JSON Object Model using a JsonWriter,
which can be created from the javax.json.Json
class.

How it Works

The JsonWriter is instantiated by passing a Writer
as an argument.	

Call upon the JsonWriter.writeObject() method,
and pass the jsonObject you wish to write out.	

Close the JsonWriter when finished.

Problem #18

You wish to parse some JSON using Java.

Solution

Use the JsonParser, which is a pull parser that
allows us to process each record via iteration.

How it Works

Parser can be created on a byte or character
stream by calling upon the Json.createParser()
method.	

Iterate over the JSON object model and/or array,
and parse each event accordingly.

How it Works
JSON Events	

START_OBJECT	

END_OBJECT	

END_ARRAY	

KEY_NAME	

VALUE_STRING	

VALUE_NUMBER	

VALUE_TRUE	

FALUE_FALSE	

VALUE_NULL

WebSockets

The Java API for WebSocket provides support
for building WebSocket applications.	

WebSocket is an application protocol that
provides full-duplex communications between
two peers over the TCP protocol.

Problem #19

You wish to create a WebSocket endpoint that
can be used to receive messages
asynchronously.

Solution

Create a WebSocket endpoint by annotating a
POJO class using @ServerEndpoint, and
providing the desired endpoint path.	

Create a message receiver method, and
annotate it with @OnMessage

Solution

How it Works

Create a WebSocket endpoint by annotating a
class with @ServerEndpoint, and passing the
value attribute with a desired path for the
endpoint URI.	

@ServerEndpoint(value=“/chatEndpoint”)	

!

URI: ws://server:port/application-name/path

ws://server:port/application-name/path

How it Works

Method annotated @OnOpen is invoked when
the WebSocket connection is made.	

Method annotated @OnMessage is invoked
when a message is sent to the endpoint. It then
returns a response.

How it Works

Specify optional Encoder and Decoder
implementations to convert messages to and
from a particular format. 	

How it Works
Example of a Decoder:	

Problem #20

You want to send a message to your new
WebSocket Endpoint.	

!

We want to add a chat service to the
AcmeWorld application.

Solution
Utilize JavaScript to open a connection to the
WebSocket endpoint. This will invoke the
@OnOpen method.

Solution
Handle messages received and messages sent
via JavaScript calls to the endpoint.

How it Works

• The javax.websocket.server package contains
annotations, classes, and interfaces to create and
configure server endpoints.	

• The javax.websocket package contains annotations,
classes, interfaces, and exceptions that are common to
client and server endpoints.	

• Open a WebSocket connection by connecting to the
endpoint using JavaScript. The WebSocket object takes
two arguments, the first is the endpoint location, and
the second is an optional string of parameters.

How it Works
Once connected, send the messages using
JavaScript to construct the JSON object from
the message content, and then send that to the
WS endpoint.	

Any encoders will intercept the message and
put it into proper format.	

@OnMessage will be invoked, processing the
message accordingly, and sending response.

How it Works

When the response is sent, the encoder is
invoked, sending the message back in JSON
format.

credit to Mika Kops: http://www.hascode.com/2013/08/creating-a-chat-application-using-java-ee-7-websockets-and-
glassfish-4/ for a nice client-side chat implementation

http://www.hascode.com/2013/08/creating-a-chat-application-using-java-ee-7-websockets-and-glassfish-4/

JMS 2.0 - Java EE
Simplified

Single biggest benefit of JMS 2.0 is better
productivity

Problem #21

You are running an online reservation system
again, and: 	

• You would like to send a message to a user
when he or she creates a reservation. 	

• Let’s also send any notifications to other
systems that are affected by the reservation.

Solution

Utilize JMS to create and send a message to
a JMS queue when a reservation is placed.	

(You have choice between classic or
simplified API...let’s see both)

Solution

How it Works

• JMSContext object simplifies the API	

• Everything implements AutoCloseable	

• Non-transaction sessions are default...no
need to specify parameters	

• JMS provider automatically coerces
message	

• JMSRuntimeException instead of checked
exceptions

Problem #22

You would like to consume a message from a
Queue and do something with it...

Solution

Implement a JMS Message Consumer (again,
your choice of classic or simplified API)

Solution

How it Works

• Utilize JMSContext to create a consumer	

• Use consumer to receive message body

Problem #23

You wish to send a message after a
designated delay period

Solution

Set a delay by specifying setDeliveryDelay

Solution

How it Works

• Specify setDeliveryDelay on the message
producer, and then send message normally	

• The message is sent after the specified
number of milliseconds

JAX-RS

New Features in JAX-RS 2.0	

Client-Side API	

Async Support	

Filters and Interceptors	

More…

Problem #24

Your application contains a web service for
obtaining information via a specified URL. You
want to generate a client to request the web
service information and do something with the
response. In this case, the web service can be
used to return reservation information per a
specified reservation ID.

Solution

Make use of the new JAX-RS Client API to build
a client application

How it Works
Obtain an instance of javax.ws.rs.client.Client by
calling ClientBuilder.newClient().	

Set any necessary properties on the client.
Properties are name/value pairs that an be passed
via setProperty(). Also may register Feature or
Provider classes.	

Call upon a target and return WebTarget.	

How it Works
Target can be further qualified by invoking path()
method and passing the next sequence in URI
path:	

client.target(“http://someservice”).path(“1”);	

Zero or more paths can be appended…	

Include dynamic content by wrapping in {}:	

client.target(“…”).path(“{dynamic}”)	

 .pathParam(“dynamic”,”my dynamic value”)

http://someservice

How it Works

Lots more for the client API:	

• Obtain a response (Different media types)	

• Return entities	

• Invoke clients at later time	

• WebTarget Injection

Problem #25

You wish to execute a long-running task within
a RESTful web service.

Solution

Make use of the AsyncResponse, allowing the
task to be performed in an asynchronous
manner, returning a response once the task has
completed.

Solution

How it Works

• Pass AsyncResponse as argument to the
REST method	

• @Suspended	

• Separate threads…client thread returns,
response returned in a separate thread	

• Runtime knows when method completes

We’ve Covered A Lot

…but there is a lot more to cover!!!!

Learn More

Code Examples: https://github.com/juneau001/AcmeWorld

Contact on Twitter: @javajuneau

https://github.com/juneau001/AcmeWorld

