
Mark Little
Red Hat, Inc.

Transactions Returning to Big Data (NoSQL)
!

OR
!

...

1

2

TRANSACTIONS

Overview

•Where we are today
•NoSQL and the enterprise
•Open source perspective?
•Changes occurring

•The future?
•Compensation transactions?
•Cloud-TM, LEADS, ...

3

Transactions and the masses

•Mass adoption through .NET, J(2)EE, CORBA ...
•JDBC, JMS, JCA, JTA, OTS
•Mainstream in the last twenty years

•Open source’s contribution
•MySQL, JBossAS

•Until the 21st Century ACID was good enough
•Then extended transactions
•XOTS, OASIS BTP, WS-CAF, WS-*

4

RDBMS

•Evolved nicely over the years
•Coped with increasing amount of data
•Coped with increasing distribution of data

•ACID transactions important to enterprises
•However, one-phase dominates
•“99% of transactions today are one-phase”, Jim Gray,

HPTS 1999
•But two-phase is a requirement for a range of

applications

5

The rise of NoSQL & Big Data

•Data explosion has caused re-evaluation of
RDBMS
•Initially RDBMS augmented with cache

•But ultimately not sufficient to cope with data
•Hence NoSQL and Big Data growth
•Range of NoSQL implementations and categories
•Document, tuple, column, graph
•See www.hpts.ws 2009 and 2011

6

NoSQL explosion

•> 24 different NoSQL/Big Data implementations
•Some evolved from cache/data grid
•Right tool for the right job

•Wouldn’t it be nice if ...
•There was a tool to automatically select the right

NoSQL solution for your use case?
•Or some objective knowledge base?

•On going PhD research

7

8

9

10

NoSQL Backlash

•http://martinfowler.com/bliki/OrmHate.html
•http://blog.engineering.kiip.me/post/20988881092/a-

year-with-mongodb
•http://saucelabs.com/blog/index.php/2012/05/goodbye-

couchdb/
•http://tech.backtype.com/the-dark-side-of-hadoop
•http://gradlesummit.com/blog/tim_o'brien/2012/12/

mongodb_stole_my_lunch_money_and_ruined_my_st
artup

11

Common reported problems

•Slow (disk) performance
•Lack of transactions/consistency
•Failures take down entire system
•Hard to configure/optimise
•Poor memory management
•Poor process management (orphans/zombies)
•Reliability

12

Why?
•Early in the maturity curve
•Evolution of NoSQL inevitable

•Some of this is definitely lack of understanding
•Lack of objective knowledge base/tool

•(Unrealistic?) expectations
•Belief that a NoSQL solution can replace RDBMS

completely
•Realisation that ACID (strong consistency) is a

requirement for their applications

13

NoSQL in the enterprise

•Many NoSQL-only applications no longer silos
•Enterprises are looking to add them to existing

scenarios
•Java EE prime amongst them

•But typically lacked global transactions

•Red Hat started with tuple-space cache/data
grid/NoSQL implementation (Infinispan)
•Now have graph/document too (ModeShape)
•Heavy demand for ACID transactions and

compensations
14

Representative scenarios

•Application developers want to combine
•RDBMS (xN - frequently)
•NoSQL (x2 - infrequently but growing)
•Messaging (xN - frequently)
•File system updates

•All in the scope of the same ACID transaction
•Or the same “transaction”?

•Some form of transaction support needed in
NoSQL implementations
•LRCO insufficient 15

Representative architecture

16

17

18

Adoption of transactions

•Growing realisation that (global) transactions are
needed
•Enterprises (Java EE) are an important use case
•Not the only reason for change though

•ACID transactions are often easier to understand
•Despite the performance downside

•Not all-or-nothing
•Controlled relaxation of ACID
•Controlled enforcement of consistency

19

Change takes time

•Slow change for some implementations
•Added local transactions
•Most only for the same data item
•Some don’t support automatic rollback/recovery (e.g.,

Redis)

•At least one implementation requires developers
to roll their own transactions!
•Telling developers to reimplement their

applications to remove need is not an option

20

NewSQL and OldSQL

•Sometimes NoSQL is not the answer
•ACID transactions cited by customers as main

reason
•MarkLogic 5 introduced support for XA
•FoundationDB provides ACID

•Also returning to RDBMS, with core rewrite
•Postgres
•MariaDB

21

Google’s Spanner

•"We believe it is better to have application
programmers deal with performance problems
due to over use of transactions as bottlenecks
arise, rather than always coding around the lack
of transactions"

22

Spanner-like

•CockroachDB
•Square, Google, open source

•NuoDB
•FoundationDB

23

Compensating transactions

•Unlikely that ACID will be standardised for
NoSQL
•Let alone XA
•Although full ACID is a goal for some, e.g.,

FoundationDB

•But compensating transactions offer a possible
solution for the enterprise problem
•Examples already in use, e.g., Sagas
•WS-TX, REST Transactions

24

JTA and Compensations

•Narayana transaction engine
•http://www.jboss.org/dms/judcon/2013unitedstates/

presentations/judcon2013_day3track2session2.pdf
•http://blog.arungupta.me/2014/03/paul-robinson-

transactional-guarantees-mongodb/

•JTA-like API
•Interoperability with JTA 1.2

•SOAP, REST/HTTP, RMI/IIOP
•Annotations based

25

Example Service

!

 @Compensatable(MANDATORY)
@TxCompensate(CancelBooking.class)
@TxConfirm(ConfirmBooking.class)
@Transactional(REQUIRES_NEW)

26

Confirmation handler

public class ConfirmBooking implements
ConfirmationHandler {

@Inject
BookingData bookingData;
!

@Transactional(REQUIRES_NEW) public void
confirm() {

//Confirm order for bookingData.getBookingID() in
Database (in a new JTA transaction) }

} 27

Compensation handler

public class CancelBooking implements
CompensationHandler {

@Inject
BookingData bookingData;
!

@Transactional(REQUIRES_NEW) public void
compensate() {

//Cancel order for bookingData.getBookingID() in
Database (in a new JTA transaction) }

} 28

29

30

Conclusions
•Enterprise applications are important
•Difficulties with integrating NoSQL and Big Data
•At least for a subset of applications

•Many NoSQL implementations now support ACID
transactions in one way or another
•One size does not fit all
•Extended transactions?

•Better education on where to use specific
technologies

31

