
PERFORMANCE AND
PREDICTABILITY
Richard Warburton

@richardwarburto
insightfullogic.com

Why care about low level rubbish?

Branch Prediction

Memory Access

Storage

Conclusions

“60 messages per second.”

“8 ElasticSearch servers on AWS, 26 front end proxy
serves. Double that in backend app servers.”

60 / (8 + 26 + 2 * 26) = 0.7 messages / server / second.

http://highscalability.com/blog/2014/1/6/how-hipchat-stores-and-indexes-billions-of-messages-
using-el.html

Technology or Principles

http://highscalability.com/blog/2014/1/6/how-hipchat-stores-and-indexes-billions-of-messages-using-el.html
http://highscalability.com/blog/2014/1/6/how-hipchat-stores-and-indexes-billions-of-messages-using-el.html
http://highscalability.com/blog/2014/1/6/how-hipchat-stores-and-indexes-billions-of-messages-using-el.html

Performance Discussion

Product Solutions
“Just use our library/tool/framework, and everything is web-scale!”

Architecture Advocacy
“Always design your software like this.”

Methodology & Fundamentals
“Here are some principles and knowledge, use your brain“

Latency Numbers
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns
20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms
Read 4K randomly from SSD* 150,000 ns 0.15 ms
Read 1 MB sequentially from memory 250,000 ns 0.25 ms
Round trip within same datacenter 500,000 ns 0.5 ms
Read 1 MB sequentially from SSD* 1,000,000 ns 1 ms
Disk seek 10,000,000 ns 10 ms
Read 1 MB sequentially from disk 20,000,000 ns 20 ms
Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Stolen (cited) from https://gist.github.com/jboner/2841832

https://gist.github.com/jboner/2841832

Low Hanging is a cost-benefit analysis

So when does it matter?

Informed Design & Architecture *

* this is not a call for premature optimisation

Case Study: Messaging

● 1 Thread reading network data

● 1 Thread writing network data

● 1 Thread conducting admin tasks

Unifying Theme: Be Predictable

An opportunity for an underlying system:
○ Branch Prediction
○ Memory Access
○ Hard Disks

Do you care?

Many problems not Predictability Related
Networking
Database or External Service
Minimising I/O
Garbage Collection
Insufficient Parallelism

Use an Optimisation Omen

Why care about low level rubbish?

Branch Prediction

Memory Access

Storage

Conclusions

What 4 things do CPUs actually do?

Fetch, Decode, Execute, Writeback

Pipelined

Super-pipelined & Superscalar

What about branches?

 public static int simple(int x, int y, int z) {

 int ret;

 if (x > 5) {

 ret = y + z;

 } else {

 ret = y;

 }

 return ret;

 }

Branches cause stalls, stalls kill performance

Can we eliminate branches?

Strategy: predict branches and speculatively
execute

Static Prediction

A forward branch defaults to not taken

A backward branch defaults to taken

Conditional Branches

if(x == 0) {

 x = 1;

}

x++;

 mov eax, $x
 cmp eax, 0
 jne end
 mov eax, 1
 end:

 inc eax
 mov $x, eax

Static Hints (Pentium 4 or later)

__emit 0x3E defaults to taken

__emit 0x2E defaults to not taken

don’t use them, flip the branch

Dynamic prediction: record history and
predict future

Branch Target Buffer (BTB)

a log of the history of each branch

also stores the program counter address

its finite!

Local

record per conditional branch histories

Global

record shared history of conditional jumps

Loop

specialised predictor when there’s a loop (jumping in a
cycle n times)

Function

specialised buffer for predicted nearby function returns

N level Adaptive Predictor

accounts for up patterns of up to N+1 if statements

Optimisation Omen

Use Performance Event Counters (Model Specific
Registers)

Can be configured to store branch prediction
information

Profilers & Tooling: perf (linux), VTune, AMD Code
Analyst, Visual Studio, Oracle Performance Studio

Demo perf

Summary

CPUs are Super-pipelined and Superscalar

Branches cause stalls

Simplify your code! Especially branching logic and
megamorphic callsites

Why care about low level rubbish?

Branch Prediction

Memory Access

Storage

Conclusions

The Problem
Very Fast

Relatively Slow

The Solution: CPU Cache

Core Demands Data, looks at its cache

If present (a "hit") then data returned to register
If absent (a "miss") then data looked up from
memory and stored in the cache

Fast memory is expensive, a small amount is affordable

Multilevel Cache: Intel Sandybridge

Shared Level 3 Cache

Level 2 Cache

Level 1
Data

Cache

Level 1
Instruction

Cache

Physical Core 0

HT: 2 Logical Cores

....

Level 2 Cache

Level 1
Data

Cache

Level 1
Instruction

Cache

Physical Core N

HT: 2 Logical Cores

How bad is a miss?

Location Latency in Clockcycles

Register 0

L1 Cache 3

L2 Cache 9

L3 Cache 21

Main Memory 150-400

Eagerly load data

Adjacent & Streaming Prefetches

Arrange Data so accesses are predictable

Prefetching

Sequential Locality

Referring to data that is arranged linearly in memory

Spatial Locality

Referring to data that is close together in memory

Temporal Locality

Repeatedly referring to same data in a short time span

General Principles

Use smaller data types (-XX:+UseCompressedOops)

Avoid 'big holes' in your data

Make accesses as linear as possible

Primitive Arrays

// Sequential Access = Predictable

for (int i=0; i<someArray.length; i++)

someArray[i]++;

Primitive Arrays - Skipping Elements

// Holes Hurt

for (int i=0; i<someArray.length; i += SKIP)

someArray[i]++;

Primitive Arrays - Skipping Elements

Multidimensional Arrays

Multidimensional Arrays are really Arrays of
Arrays in Java. (Unlike C)

Some people realign their accesses:

for (int col=0; col<COLS; col++) {
 for (int row=0; row<ROWS; row++) {
array[ROWS * col + row]++;

 }
}

Bad Access Alignment

Strides the wrong way, bad
locality.

array[COLS * row + col]++;

Strides the right way, good
locality.

array[ROWS * col + row]++;

Full Random Access
L1D - 5 clocks
L2 - 37 clocks
Memory - 280 clocks

Sequential Access
L1D - 5 clocks
L2 - 14 clocks
Memory - 28 clocks

Primitive Collections (GNU Trove, GS-Coll, FastUtil, HPPC)

Arrays > Linked Lists

Hashtable > Search Tree

Avoid Code bloating (Loop Unrolling)

Data Layout Principles

Custom Data Structures

Judy Arrays
an associative array/map

kD-Trees
generalised Binary Space Partitioning

Z-Order Curve
multidimensional data in one dimension

Data Locality vs Java Heap Layout

0

1

2

class Foo {
Integer count;
Bar bar;
Baz baz;

}

// No alignment guarantees
for (Foo foo : foos) {

foo.count = 5;
foo.bar.visit();

}

3

...

Foo

bar

baz

count

Data Locality vs Java Heap Layout

Serious Java Weakness

Location of objects in memory hard to
guarantee.

GC also interferes
Copying
Compaction

Optimisation Omen

Again Use Performance Event Counters

Measure for cache hit/miss rates

Correlate with Pipeline Stalls to identify where this is
relevant

Object Layout Control

On Heap
http://objectlayout.github.io/ObjectLayout

Off Heap
- Data Structures: Chronicle or JCTools Experimental
- Serialisation: SBE, Cap’n’p, Flatbuffers

http://objectlayout.github.io/ObjectLayout
http://objectlayout.github.io/ObjectLayout

Summary

Cache misses cause stalls, which kill performance

Measurable via Performance Event Counters

Common Techniques for optimizing code

Why care about low level rubbish?

Branch Prediction

Memory Access

Storage

Conclusions

Hard Disks

Commonly used persistent storage

Spinning Rust, with a head to read/write

Constant Angular Velocity - rotations per minute stays
constant

Sectors size differs between device

A simple model

Zone Constant Angular Velocity (ZCAV) /
Zoned Bit Recording (ZBR)

Operation Time =
Time to process the command
Time to seek
Rotational speed latency
Sequential Transfer TIme

ZBR implies faster transfer at limits than
centre (~25%)

Seeking vs Sequential reads

Seek and Rotation times dominate on small values of
data

Random writes of 4kb can be 300 times slower than
theoretical max data transfer

Consider the impact of context switching between
applications or threads

Fragmentation causes unnecessary seeks

Sector (Mis) Alignment

Optimisation Omen

1. Application Spending time waiting on I/O

2. I/O Subsystem not transferring much data

Summary

Simple, sequential access patterns win

Fragmentation is your enemy

Alignment can be important

Why care about low level rubbish?

Branch Prediction

Memory Access

Storage

Conclusions

Speedups

● Possible 20 cycle stall for a mispredict (example 5x

slowdown)

● 200x for L1 cache hit vs Main Memory

● 300x for sequential vs random on disk

● Theoretical Max

Common Themes

● Principles over Tools

● Data over Unsubstantiated Claims

● Simple over Complex

● Predictable Access over Random Access

More information

Articles
http://www.akkadia.org/drepper/cpumemory.pdf
https://gmplib.org/~tege/x86-timing.pdf
http://psy-lob-saw.blogspot.co.uk/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-
ia-32-architectures-optimization-manual.html
http://mechanical-sympathy.blogspot.co.uk
http://www.agner.org/optimize/microarchitecture.pdf

Mailing Lists:
https://groups.google.com/forum/#!forum/mechanical-sympathy
https://groups.google.com/a/jclarity.com/forum/#!forum/friends
http://gee.cs.oswego.edu/dl/concurrency-interest/

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
https://gmplib.org/~tege/x86-timing.pdf
https://gmplib.org/~tege/x86-timing.pdf
http://psy-lob-saw.blogspot.co.uk/
http://psy-lob-saw.blogspot.co.uk/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://mechanical-sympathy.blogspot.co.uk
http://mechanical-sympathy.blogspot.co.uk
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
https://groups.google.com/forum/#!forum/mechanical-sympathy
https://groups.google.com/forum/#!forum/mechanical-sympathy
https://groups.google.com/a/jclarity.com/forum/#!forum/friends
https://groups.google.com/a/jclarity.com/forum/#!forum/friends
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/

http://java8training.com

http://is.gd/javalambdas

http://http//java8training.com/
http://http//java8training.com/
http://is.gd/javalambdas
http://is.gd/javalambdas

Q & A
@richardwarburto
insightfullogic.com
tinyurl.com/java8lambdas

