
OOP and FP
Richard Warburton

What on earth are you talking about?

SOLID Principles

Design Patterns

Anthropology

In Quotes ...

"OOP is to writing a program, what going through airport
security is to flying"

- Richard Mansfield

"TDD replaces a type checker in Ruby in the same way that
a strong drink replaces sorrows."

- byorgey

http://en.wikipedia.org/wiki/Airport_security
http://en.wikipedia.org/wiki/Airport_security
http://en.wikipedia.org/wiki/Airport_security

In Quotes ...

"Brain explosion is like a traditional pasttime in #haskell"

"Some people claim everything is lisp. One time I was
eating some spaghetti and someone came by and said:
'Hey, nice lisp dialect you're hacking in there'"

Caveat: some unorthodox definitions may be
provided

What on earth are you talking about?

SOLID Principles

Design Patterns

Anthropology

SOLID Principles

● Basic Object Oriented Programming
Principles

● Make programs easier to maintain

● Guidelines to remove code smells

Single Responsibility Principle

● Each class/method should have single
responsibility

● Responsibility means “reason to change”

● The responsibility should be encapsulated

int countPrimes(int upTo) {

 int tally = 0;

 for (int i = 1; i < upTo; i++) {

 boolean isPrime = true;

 for (int j = 2; j < i; j++) {

 if (i % j == 0) {

 isPrime = false;

 }

 }

 if (isPrime) {

 tally++;

 }

 }

 return tally;

}

int countPrimes(int upTo) {

 int tally = 0;

 for (int i = 1; i < upTo; i++) {

 if (isPrime(i)) {

 tally++;

 }

 }

 return tally;

}

boolean isPrime(int number) {

 for (int i = 2; i < number; i++) {

 if (number % i == 0) {

 return false;

 }

 }

 return true;

}

long countPrimes(int upTo) {

 return IntStream.range(1, upTo)

 .filter(this::isPrime)

 .count();

}

boolean isPrime(int number) {

 return IntStream.range(2, number)

 .allMatch(x -> (number % x) != 0);

}

Higher Order Functions

● Hard to write single responsibility code in
Java before 8

● Single responsibility requires ability to pass
around behaviour

● Not just functions, Higher Order Functions

Open Closed Principle

"software entities should be open for extension,
but closed for modification"

- Bertrand Meyer

Example: Graphing Metric Data

OCP as Polymorphism

● Graphing Metric Data
○ CpuUsage
○ ProcessDiskWrite
○ MachineIO

● GraphDisplay depends upon a
TimeSeries rather than each individually

● No need to change GraphDisplay to add
SwapTime

// Example creation

ThreadLocal<DateFormat> formatter =

 withInitial(() -> new SimpleDateFormat());

// Usage

DateFormat formatter = formatter.get();

// Or ...
AtomicInteger threadId = new AtomicInteger();

ThreadLocal<Integer> formatter =

 withInitial(() -> threadId.getAndIncrement());

OCP as High Order Function

OCP as Immutability

● Immutable Object cannot be modified after
creation

● Safe to add additional behaviour

● New pure functions can’t break existing
functionality because it can’t change state

Liskov Substitution Principle

Let q(x) be a property provable about objects

x of type T. Then q(y) should be true for

objects y of type S where S is a subtype of T.

* Excuse the informality

A subclass behaves like its parent.

* This is a conscious simplification

1. Where the parent worked the child should.

2. Where the parent caused an effect then the

child should.

3. Where parent always stuck by something

then the child should.

4. Don’t change things your parent didn’t.

Functional Perspective

● Inheritance isn’t key to FP

● Lesson: don’t inherit implementation and
LSP isn’t an issue!

● Composite Reuse Principle already
commonly accepted OOP principle

Interface Segregation Principle

"The dependency of one class to another one
should depend on the smallest possible
interface"

- Robert Martin

Factory Example
interface Worker {

 public void goHome();

 public void work();

}

AssemblyLine requires instances of
Worker: AssemblyWorker and Manager

The factories start using robots...

… but a Robot doesn’t goHome()

Nominal Subtyping

● For Foo to extend Bar you need to see Foo
extends Bar in your code.

● Relationship explicit between types based
on the name of the type

● Common in Statically Typed, OO languages:
Java, C++

class AssemblyWorker implements
Worker

class Manager implements Worker

class Robot implements Worker

public void addWorker(Worker worker) {
 workers.add(worker);
}

public static AssemblyLine newLine() {
 AssemblyLine line = new AssemblyLine();
 line.addWorker(new Manager());
 line.addWorker(new AssemblyWorker());
 line.addWorker(new Robot());
 return line;
}

Structural Subtyping

● Relationship implicit between types based
on the shape/structure of the type

● If you call obj.getFoo() then obj needs a
getFoo method

● Common in wacky language: Ocaml, Go,
C++ Templates, Ruby (quack quack)

class StructuralWorker {

 def work(step:ProductionStep) {
 println(
 "I'm working on: "
 + step.getName)
 }

}

def addWorker(worker: {def work(step:ProductionStep)}) {

 workers += worker

}

def newLine() = {

 val line = new AssemblyLine

 line.addWorker(new Manager())

 line.addWorker(new StructuralWorker())

 line.addWorker(new Robot())

 line

}

Hypothetically …

def addWorker(worker) {

 workers += worker

}

def newLine() = {

 val line = new AssemblyLine

 line.addWorker(new Manager())

 line.addWorker(new StructuralWorker())

 line.addWorker(new Robot())

 line

}

Functional Interfaces

● An interface with a single abstract
method

● By definition the minimal interface!

● Used as the inferred types for lambda
expressions in Java 8

Thoughts on ISP

● Structural Subtyping removes the need for
Interface Segregation Principle

● Functional Interfaces provide a nominal-
structural bridge

● ISP != implementing 500 interfaces

Dependency Inversion Principle

● Abstractions should not depend on details,
details should depend on abstractions

● Decouple glue code from business logic

● Inversion of Control/Dependency Injection is
an implementation of DIP

Dependency Inversion Principle

Streams Library

album.getMusicians()

 .filter(artist -> artist.name().contains(“The”))

 .map(artist -> artist.getNationality())

 .collect(toList());

Resource Handling & Logic

List<String> findHeadings() {

 try (BufferedReader reader

 = new BufferedReader(new FileReader(file))) {

 return reader.lines()

 .filter(isHeading)

 .collect(toList());

 } catch (IOException e) {

 throw new HeadingLookupException(e);

 }

}

Business Logic

private List<String> findHeadings() {

 return withLinesOf(file,

 lines -> lines.filter(isHeading)

 .collect(toList()),

 HeadingLookupException::new);

}

Resource Handling

<T> T withLinesOf(String file,

 Function<Stream<String>, T> handler,

 Function<IOException,

 RuntimeException> error) {

 try (BufferedReader reader =

 new BufferedReader(new FileReader(file))) {

 return handler.apply(reader.lines());

 } catch (IOException e) {

 throw error.apply(e);

 }

}

DIP Summary

● Higher Order Functions also provide
Inversion of Control

● Abstraction != interface

● Functional resource handling, eg withFile
in haskell

All the solid patterns have a functional
equivalent

The same idea expressed in different ways

What on earth are you talking about?

SOLID Principles

Design Patterns

Anthropology

Command Pattern

• Receiver - performs the actual work.

• Command - encapsulates all the information

required to call the receiver.

• Invoker - controls the sequencing and

execution of one or more commands.

• Client - creates concrete command instances

Macro: take something that’s long and make it short

public interface Editor {

public void save();

public void open();

public void close();

}

public interface Action {

public void perform();

}

public class Open implements Action {

private final Editor editor;

public Open(Editor editor) {

this.editor = editor;

}

public void perform() {

editor.open();

}

}

public class Macro {

private final List<Action> actions;

…

public void record(Action action) {

actions.add(action);

}

public void run() {

actions.forEach(Action::perform);

}

}

Macro macro = new Macro();
macro.record(new Open(editor));
macro.record(new Save(editor));
macro.record(new Close(editor));
macro.run();

The Command Object is a Function

Macro macro = new Macro();
macro.record(() -> editor.open());
macro.record(() -> editor.save());
macro.record(() -> editor.close());
macro.run();

Observer Pattern

Concrete Example: Profiler

public interface ProfileListener {

 public void accept(Profile profile);

}

private final List<ProfileListener> listeners;

public void addListener(ProfileListener listener) {

 listeners.add(listener);

}

private void accept(Profile profile) {

 for (ProfileListener listener : listeners) {

 listener.accept(profile)

 }

}

Previously you needed to write this EVERY
time.

Consumer<T> === T → ()
ProfileListener === Profile → ()
ActionListener === Action → ()

public class Listeners<T> implements Consumer<T> {

 private final List<Consumer<T>> consumers;

 public Listeners<T> add(Consumer<T> consumer) {

 consumers.add(consumer);

 return this;

 }

 @Override

 public void accept(T value) {

 consumers.forEach(consumer -> consumer.accept(value));

 }

public ProfileListener provide(

 FlatViewModel flatModel,

 TreeViewModel treeModel) {

 Listeners<Profile> listener = new

Listeners<Profile>()

 .of(flatModel::accept)

 .of(treeModel::accept);

 return listener::accept;

}

Existing Design Patterns don’t need to be
thrown away.

Existing Design Patterns can be improved.

What on earth are you talking about?

SOLID Principles

Design Patterns

Anthropology

Popular programming language evolution
follows Arnie’s career.

The 1980s were great!

Programming 80s style

● Strongly multiparadigm languages
○ Smalltalk 80 had lambda expressions
○ Common Lisp Object System

● Polyglot Programmers

● Fertile Language Research

● Implementation Progress - GC, JITs, etc.

The 1990s ruined everything

90s and 2000s Market Convergence

● Huge Java popularity ramp
○ Javaone in 2001 - 28,000 attendees
○ Servlets, J2EE then Spring

● Virtual death of Smalltalk, LISP then Perl

● Object Oriented Dominance

Now everyone is friends

Increasingly Multiparadigm

● Established languages going multiparadigm
○ Java 8 - Generics + Lambdas
○ C++ - Templates, Lambdas

● Newer Languages are multi paradigm
○ F#
○ Ruby/Python/Groovy can be functional
○ New JVM languages:

■ Scala
■ Ceylon
■ Kotlin

http://java8training.com

http://is.gd/javalambdas

@richardwarburto
http://insightfullogic.com

http://http//java8training.com/
http://http//java8training.com/
http://is.gd/javalambdas
http://is.gd/javalambdas
http://insightfullogic.com
http://insightfullogic.com

