
Java EE 7 Recipes for
Concurrency

Presented By: Josh Juneau	

Author and Application Developer	

About Me

Josh Juneau	

Day Job: Developer and DBA @ Fermilab	

Night/Weekend Job: Technical Writer	

 - Java Magazine and OTN	

 - Java EE 7 Recipes	

 - Introducing Java EE 7	

 - Java 8 Recipes	

Twitter: @javajuneau

Agenda

Resolve a series of real life scenarios using the
features of Concurrency Utilities for Java EE.

Java EE 7 Increases
Productivity and

Introduces Standards

Java EE 7 Increases
Productivity

• CDI Everywhere	

• JAX-RS Client API, Async Processing	

• Bean Validation in EJBs and POJOs	

• JSF Flows	

• JMS 2.0

Java EE 7 Introduces
Standards

• WebSockets	

• JSON-P	

• Batch API	

• Concurrency Utilities for Java EE	

• JPA Schema Generation

Concurrency Utilities
for Java EE

Concurrency Utilities for Java EE - Now we
have a standard for developing multi-threaded
and concurrent applications

Recipes!

Problem #1

You are developing an online reservation
system for a multi-million dollar company,
and your client wishes to allow managers the
ability to click a button to have the details of
their all reservations sent to them, while the
manager continues to navigate the site.

Solution

When the user clicks the button, send the
task to a ManagedExecutorService on the
application server for processing, and allow
the user to continue their work.

Solution

How it Works
• In Java SE 5, the java.util.concurrent package was

introduced, providing a convenient and standard
way to manage threads within Java SE applications	

• The Concurrency Utilities for Java EE extends upon
the SE implementation, making the concurrent
resources injectable and placing them in the
application server container	

• All Java EE 7 Compliant Application Servers must
contain default concurrent resources, in GlassFish
these resources begin with _default, e.g:
_defaultManagedExecutorService

How it Works
• Concurrency Utilities relies on JTA to maintain

transaction boundaries	

• User transaction support	

• Manageable via JMX	

• Access a Concurrent Resource via JNDI lookup or
Injection:	

InitialContext ctx = new InitialContext();	

ManagedExecutorService executor =
(ManagedExecutorService)ctx.lookup("java:comp/DefaultManagedExecutorService");

How it Works

• A “Task” is a unit of work that needs to be executed in
a concurrent manner	

• java.lang.Runnable or java.util.concurrent.Callable, and
optionally ManagedTask	

• Context passed to the task	

• To submit an individual task to a
ManagedExecutorService, use the submit method to
return a Future object	

• To submit an individual task for execution at an
arbitrary point, use the execute method

A Look at Lifecycle

Problem #2

You wish to invoke multiple long-running or
resource intensive tasks in a concurrent
manner 	

(Multiple reservation reports!)

Solution

Submit multiple tasks to a
ManagedExecutorService by calling the
invokeAll or invokeAny method

Solution

How it Works

Works in the same manner as invocation of a
single task, except pass a Collection of tasks:	

 Call invokeAll to execute all tasks	

 Call invokeAny to execute at most one

Problem #3

You wish to execute multiple background tasks,
and then utilize the output of each together to
formulate an end product.

Solution

Send each managed task to the
ManagedExecutorService separately, and then
work with each of the Future results once they
are returned.

Solution

How it Works

It is possible to send multiple tasks to the
ManagedExecutorService, and each of the tasks
will return a separate Future object with which
work can be completed.

Problem #4

You would like to schedule a task to be
executed at a specified date and time.

Solution

Create a task class, implementing either
Runnable or Callable, and pass it to the
ManagedScheduledExecutorService

Solution

• Use a servlet to schedule tasks…
AcmeWorldServletContextListener

How it Works

• Reference managed executor via JNDI
lookup or injection via @Resource	

• User transaction support

How it Works

• Invoke task using
ManagedScheduledExecutorService by
invoking scheduleAtFixedRate()	

• Other options: schedule(),
scheduleWithFixedDelay()	

• Trigger API for further customization

Problem #5

You would like to fine tune a
ScheduledManagedExecutorService to skip
specified runs. In this case, we will skip every
third run.

Solution

Utilize a Trigger class to implement the business
logic to calculate which runs should be skipped,
and pass the Trigger class to the
ManageScheduledExecutorService with the
Task.

How it Works

• Trigger API	

• Allows developers more control over
how tasks are executed.	

• schedule(Runnable\Callable, Trigger)

Trigger Example

How it Works

• getNextRunTime(LastExecution, Date):	

• Retrieve the next date and time the task
should run	

• Useful for gleaning information regarding
the next task execution

How it Works

• skipRun(LastExecution, Date):	

• Returns a TRUE if the task run instance
should be skipped	

• Useful for skipping task instances if the
previous instance is paused or skipped	

• Once task is skipped, the Future state will
throw a SkippedException…unchecked
exceptions wrapped in SkippedException

Problem #6

You are interested in spawning a thread to
periodically execute a task in the background

Solution

Spawn a server managed thread by passing a task via a
ManagedThreadFactory

How it Works
• A server managed Thread runs the same as any

standard Thread...but in a managed fashion	

• Utilize JNDI lookup or Injection via @Resource 	

• Context of invoking class can be passed to the
Thread	

• Threads can be managed via JMX	

• User transaction support

Problem #7

You are interested in propagating contextual
information from the Java EE container
runtime to other threads.

Solution

Create a contextual proxy of a task that you
wish to invoke later on.	

!

!

!

!
In another session…

How it Works

• Context of application is captured upon
creation of proxy	

• Proxy object methods can be run in the
captured context at a later time

How it Works

• Creating Proxy:	

• createContextualProxy - various
implementations	

• Utilizes java.lang.reflect package

How it Works

• Dynamic proxy can be customized via
execution properties	

• Return execution properties of given
instance:	

• Map<String, String>
getExecutionProperties(Object contextualProxy)

How it Works
Can be executed on same transaction context
a invoking thread:	

• Execution Task:
ManagedTask.TRANSACTION	

Use Cases:	

• Propagate Security identity	

• Run tasks within a different context

Problem #8

You would like to monitor the lifecycle
current asynchronous operations that are
running within your Java EE Container.

Solution

Utilize a ManagedTaskListener to manage your
Task’s lifecycle.

How it Works

• Allow managed task class to implement
ManagedTask interface	

	
 OR	

• ManagedTaskListener is submitted along
with the Task class to the executor via the
ManagedExecutors.managedTask utility
method

How it Works

• Create a custom class that implements
ManagedTaskListener, and override
methods accordingly

How it Works

• Lifecycle Monitoring:	

• taskSubmitted	

• taskAborted	

• taskStarting	

• taskDone

Problem #9

Your application consists of a JSF view
containing a tabbed UI. You’d like to load
data on different tabs using separate
concurrent tasks.	

Solution

Utilize a separate Managed ExecutorService
for initiating tasks in each of the tabs. Utilize
a sophisticated user interface that informs
the user of the current status on each tab.	

How it Works

Separate ManagedExecutorServices initiated
from each different tab.	

Utilization of PrimeFaces poll component to
periodically check upon the status of the
Future objects, and supply informative
feedback to the user.	

Problem #10

You would like to learn more about
Concurrency Utilities for Java EE. . .

Learn More

Code Examples: https://github.com/juneau001/AcmeWorld

Contact on Twitter: @javajuneau

https://github.com/juneau001/AcmeWorld

Contact

Josh Juneau	

 - Java EE 7 Recipes	

 - Introducing Java EE 7	

 - Java 8 Recipes	

Twitter: @javajuneau

