
Class Transformer: One of the Best-Kept Java Secrets

Class Transformer
One of the Best-Kept Java Secrets

Bernd Müller

,
Bernd Müller 30.9.2014 1/55

Class Transformer: One of the Best-Kept Java Secrets

Alternative Title

How to pass ALL unit tests ;-)

,
Bernd Müller 30.9.2014 2/55

Class Transformer: One of the Best-Kept Java Secrets

Speaker Introduction

Speaker Introduction

I Prof. Computer Science, Ostfalia University, Germany

I Book author (JSF, JPA, JBoss Seam, ...)

I Member EGs JSR 344 (JSF 2.2) und JSR 338 (JPA 2.1)

I CEO PMST GmbH

I . . .

,
Bernd Müller 30.9.2014 3/55

Class Transformer: One of the Best-Kept Java Secrets

Outline

Outline

I Class Loader
I Class Transformer

I Redefinition
I Retransformation

,
Bernd Müller 30.9.2014 4/55

Class Transformer: One of the Best-Kept Java Secrets

Motivation

Motivation

I Bad News:
I For application developers probably no utilizable knowledge
I Framework developers will already know

I Good News:
I For Java developers it pays off to know what goes on behind the scenes
I You will understand some things better and therefore get better
I Eventually you will have some fun (see unit tests)

,
Bernd Müller 30.9.2014 5/55

Class Transformer: One of the Best-Kept Java Secrets

Motivation

Motivation

I Bad News:
I For application developers probably no utilizable knowledge
I Framework developers will already know

I Good News:
I For Java developers it pays off to know what goes on behind the scenes
I You will understand some things better and therefore get better
I Eventually you will have some fun (see unit tests)

,
Bernd Müller 30.9.2014 5/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader

or

How classes get into the VM

,
Bernd Müller 30.9.2014 6/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Motivation: A Look Behind the Scenes

I Class loader working in background thus negligible for Hello World class programs

I Shown for Java 1.1 FQN not sufficient: Java is not type-safe, Vijay Saraswat,
AT&T Research, 1997

I In Java 1.2 new class loader architecture, remained valid since then

I Some methods in SDK classes have parameter of type ClassLoader and there
are implementations of abstract class ClassLoader

I Class loader important for Java EE. What the spec says . . .

,
Bernd Müller 30.9.2014 7/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Motivation: A Look Behind the Scenes

I Class loader working in background thus negligible for Hello World class programs

I Shown for Java 1.1 FQN not sufficient: Java is not type-safe, Vijay Saraswat,
AT&T Research, 1997

I In Java 1.2 new class loader architecture, remained valid since then

I Some methods in SDK classes have parameter of type ClassLoader and there
are implementations of abstract class ClassLoader

I Class loader important for Java EE. What the spec says . . .

,
Bernd Müller 30.9.2014 7/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Motivation: A Look Behind the Scenes

I Class loader working in background thus negligible for Hello World class programs

I Shown for Java 1.1 FQN not sufficient: Java is not type-safe, Vijay Saraswat,
AT&T Research, 1997

I In Java 1.2 new class loader architecture, remained valid since then

I Some methods in SDK classes have parameter of type ClassLoader and there
are implementations of abstract class ClassLoader

I Class loader important for Java EE. What the spec says . . .

,
Bernd Müller 30.9.2014 7/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Motivation: A Look Behind the Scenes

I Class loader working in background thus negligible for Hello World class programs

I Shown for Java 1.1 FQN not sufficient: Java is not type-safe, Vijay Saraswat,
AT&T Research, 1997

I In Java 1.2 new class loader architecture, remained valid since then

I Some methods in SDK classes have parameter of type ClassLoader and there
are implementations of abstract class ClassLoader

I Class loader important for Java EE. What the spec says . . .

,
Bernd Müller 30.9.2014 7/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Motivation: A Look Behind the Scenes

I Class loader working in background thus negligible for Hello World class programs

I Shown for Java 1.1 FQN not sufficient: Java is not type-safe, Vijay Saraswat,
AT&T Research, 1997

I In Java 1.2 new class loader architecture, remained valid since then

I Some methods in SDK classes have parameter of type ClassLoader and there
are implementations of abstract class ClassLoader

I Class loader important for Java EE. What the spec says . . .

,
Bernd Müller 30.9.2014 7/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Java EE 6 (JSR 316)

I EE.8.3 Class Loading Requirements
The Java EE specification purposely does not define the exact types and
arrangements of class loaders that must be used by a Java EE product. Instead,
the specification defines requirements in terms of what classes must or must not
be visible to components. A Java EE product is free to use whatever class loaders
it chooses to meet these requirements. Portable applications must not depend on
the types of class loaders used or the hierarchical arrangement of class loaders, if
any. Applications should use the techniques described in Section EE.8.2.5,
“Dynamic Class Loading” if they need to load classes dynamically.

,
Bernd Müller 30.9.2014 8/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Basics

I VM
I loads
I links
I and initializes

classes and interfaces dynamically

I Loading: Find binary representation of class or interface type for some name and
create class/interface out of this

I Linking: Insert class/interface in actual runtime state of VM to ensure it can be
used

I Initializing: Execute initialization method <clinit>

,
Bernd Müller 30.9.2014 9/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Basics

I VM
I loads
I links
I and initializes

classes and interfaces dynamically

I Loading: Find binary representation of class or interface type for some name and
create class/interface out of this

I Linking: Insert class/interface in actual runtime state of VM to ensure it can be
used

I Initializing: Execute initialization method <clinit>

,
Bernd Müller 30.9.2014 9/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Basics

I VM
I loads
I links
I and initializes

classes and interfaces dynamically

I Loading: Find binary representation of class or interface type for some name and
create class/interface out of this

I Linking: Insert class/interface in actual runtime state of VM to ensure it can be
used

I Initializing: Execute initialization method <clinit>

,
Bernd Müller 30.9.2014 9/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Basics

I VM
I loads
I links
I and initializes

classes and interfaces dynamically

I Loading: Find binary representation of class or interface type for some name and
create class/interface out of this

I Linking: Insert class/interface in actual runtime state of VM to ensure it can be
used

I Initializing: Execute initialization method <clinit>

,
Bernd Müller 30.9.2014 9/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Loading and Linking

I Loading creates (with some basic checks) a Class object which can’t be used yet

I Linking consists of:
I Verification
I Preparation
I Resolution

,
Bernd Müller 30.9.2014 10/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Loading and Linking

I Loading creates (with some basic checks) a Class object which can’t be used yet
I Linking consists of:

I Verification
I Preparation
I Resolution

,
Bernd Müller 30.9.2014 10/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Verification

I Verification checks that class will “behave well“ and does not cause runtime
problems

I Some checks:
I Constant Pool consistent
I No overriding of final methods
I Methods respect access control
I Methods called with correct number and types of parameters
I Byte code does not manipulate stack
I Variables initialized before usage
I Values assigned to variables type compatible
I Call to superclass constructor first statement in constructor
I . . .

I If violated a VerifyError is thrown

,
Bernd Müller 30.9.2014 11/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Verification

I Verification checks that class will “behave well“ and does not cause runtime
problems

I Some checks:
I Constant Pool consistent
I No overriding of final methods
I Methods respect access control
I Methods called with correct number and types of parameters
I Byte code does not manipulate stack
I Variables initialized before usage
I Values assigned to variables type compatible
I Call to superclass constructor first statement in constructor
I . . .

I If violated a VerifyError is thrown

,
Bernd Müller 30.9.2014 11/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Verification

I Verification checks that class will “behave well“ and does not cause runtime
problems

I Some checks:
I Constant Pool consistent
I No overriding of final methods
I Methods respect access control
I Methods called with correct number and types of parameters
I Byte code does not manipulate stack
I Variables initialized before usage
I Values assigned to variables type compatible
I Call to superclass constructor first statement in constructor
I . . .

I If violated a VerifyError is thrown

,
Bernd Müller 30.9.2014 11/55

Verfication: Recent Example

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Preparation und Resolution

I Preparation:
Ensures storage is allocated for class and class variables can be initialized.
However, initialization is not performed and no byte code is executed

I Resolution:
Checks that all referenced classes are loaded. If not these classes get loaded

I If all classes are loaded, initialization is performed (class variables and static
initializer blocks)

I If completed class is ready to be used

,
Bernd Müller 30.9.2014 13/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Preparation und Resolution

I Preparation:
Ensures storage is allocated for class and class variables can be initialized.
However, initialization is not performed and no byte code is executed

I Resolution:
Checks that all referenced classes are loaded. If not these classes get loaded

I If all classes are loaded, initialization is performed (class variables and static
initializer blocks)

I If completed class is ready to be used

,
Bernd Müller 30.9.2014 13/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Preparation und Resolution

I Preparation:
Ensures storage is allocated for class and class variables can be initialized.
However, initialization is not performed and no byte code is executed

I Resolution:
Checks that all referenced classes are loaded. If not these classes get loaded

I If all classes are loaded, initialization is performed (class variables and static
initializer blocks)

I If completed class is ready to be used

,
Bernd Müller 30.9.2014 13/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Preparation und Resolution

I Preparation:
Ensures storage is allocated for class and class variables can be initialized.
However, initialization is not performed and no byte code is executed

I Resolution:
Checks that all referenced classes are loaded. If not these classes get loaded

I If all classes are loaded, initialization is performed (class variables and static
initializer blocks)

I If completed class is ready to be used

,
Bernd Müller 30.9.2014 13/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Java Doc ClassLoader

public abstract class ClassLoader extends Object

A class loader is an object that is responsible for loading classes. The class
ClassLoader is an abstract class. . . .

Every Class object contains a reference to the ClassLoader that defined it. . . .

Applications implement subclasses of ClassLoader in order to extend the manner in
which the Java virtual machine dynamically loads classes.

Class loaders may typically be used by security managers to indicate security domains.

,
Bernd Müller 30.9.2014 14/55

Java Doc ClassLoader (cont’d)
The ClassLoader class uses a delegation model to search for classes and resources.
Each instance of ClassLoader has an associated parent class loader. When requested to
find a class or resource, a ClassLoader instance will delegate the search for the class or
resource to its parent class loader before attempting to find the class or resource itself.
The virtual machine’s built-in class loader, called the ”bootstrap class loader”, does
not itself have a parent but may serve as the parent of a ClassLoader instance.

Class loaders that support concurrent loading of classes are known as parallel capable
class loaders and are required to register themselves at their class initialization time by
invoking the ClassLoader.registerAsParallelCapable method. Note that the ClassLoader
class is registered as parallel capable by default. However, its subclasses still need to
register themselves if they are parallel capable. In environments in which the delegation
model is not strictly hierarchical, class loaders need to be parallel capable, . . .

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class loader basics (cont’d)

I Chicken and egg problem: creation of class loader instance requires that class
loader is already loaded. Who did it?

I Class Loader is ordinary class and extends Object. Object must already be
loaded. Who did it?

I Mentioned in Java doc: bootstrap class loader

I Because of delegation model a hierarchy is formed: All class loaders have a parent.
Exception is bootstrap class loader

,
Bernd Müller 30.9.2014 16/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class loader basics (cont’d)

I Chicken and egg problem: creation of class loader instance requires that class
loader is already loaded. Who did it?

I Class Loader is ordinary class and extends Object. Object must already be
loaded. Who did it?

I Mentioned in Java doc: bootstrap class loader

I Because of delegation model a hierarchy is formed: All class loaders have a parent.
Exception is bootstrap class loader

,
Bernd Müller 30.9.2014 16/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class loader basics (cont’d)

I Chicken and egg problem: creation of class loader instance requires that class
loader is already loaded. Who did it?

I Class Loader is ordinary class and extends Object. Object must already be
loaded. Who did it?

I Mentioned in Java doc: bootstrap class loader

I Because of delegation model a hierarchy is formed: All class loaders have a parent.
Exception is bootstrap class loader

,
Bernd Müller 30.9.2014 16/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class loader basics (cont’d)

I Chicken and egg problem: creation of class loader instance requires that class
loader is already loaded. Who did it?

I Class Loader is ordinary class and extends Object. Object must already be
loaded. Who did it?

I Mentioned in Java doc: bootstrap class loader

I Because of delegation model a hierarchy is formed: All class loaders have a parent.
Exception is bootstrap class loader

,
Bernd Müller 30.9.2014 16/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Hierarchy

I Bootstrap class loader
I Very early instantiated at VM start
I Usually implemented native
I Virtually belongs to VM
I Loads system JARs, e.g. rt.jar
I Does not verify
I Path property: sun.boot.class.path

I Extension class loader
I Loads standard extensions
I Path property: java.ext.dirs
I Class: sun.misc.Launcher$ExtClassLoader

,
Bernd Müller 30.9.2014 17/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Hierarchy

I Bootstrap class loader
I Very early instantiated at VM start
I Usually implemented native
I Virtually belongs to VM
I Loads system JARs, e.g. rt.jar
I Does not verify
I Path property: sun.boot.class.path

I Extension class loader
I Loads standard extensions
I Path property: java.ext.dirs
I Class: sun.misc.Launcher$ExtClassLoader

,
Bernd Müller 30.9.2014 17/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Hierarchie (cont’d)

I Application class loader

I Loads application classes
I In SE class loader which loads most of the classes
I Path property: java.class.path
I Class: sun.misc.Launcher$AppClassLoader

I Custom class loader

I Required in Java-EE to comply with Spec
I Everyone (you ?) can write own class loader
I Well known example: JBoss Modules

,
Bernd Müller 30.9.2014 18/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Hierarchie (cont’d)

I Application class loader

I Loads application classes
I In SE class loader which loads most of the classes
I Path property: java.class.path
I Class: sun.misc.Launcher$AppClassLoader

I Custom class loader

I Required in Java-EE to comply with Spec
I Everyone (you ?) can write own class loader
I Well known example: JBoss Modules

,
Bernd Müller 30.9.2014 18/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Hierarchie (cont’d)

I Application class loader

I Loads application classes
I In SE class loader which loads most of the classes
I Path property: java.class.path
I Class: sun.misc.Launcher$AppClassLoader

I Custom class loader

I Required in Java-EE to comply with Spec
I Everyone (you ?) can write own class loader
I Well known example: JBoss Modules

Bootstrap

Extension

Application

Custom: EE Custom: XY

Plattform

Custom

,
Bernd Müller 30.9.2014 18/55

Can we review this?

I VM class loader option: -verbose:class

1: [Opened /usr/lib/jvm/.../jre/lib/rt.jar]

2: [Loaded java.lang.Object from /usr/lib/jvm/.../jre/lib/rt.jar]

3: [Loaded java.io.Serializable from /usr/lib/jvm/.../jre/lib/rt.jar]

12: [Loaded java.lang.ClassLoader from /usr/lib/jvm/.../jre/lib/rt.jar]

55: [Loaded sun.reflect.DelegatingClassLoader from /usr/lib/jvm/.../jre/lib/rt.jar]

223: [Loaded java.lang.ClassLoader$3 from /usr/lib/jvm/.../jre/lib/rt.jar]

228: [Loaded java.lang.ClassLoader$NativeLibrary from /usr/lib/jvm/.../jre/lib/rt.jar]

243: [Loaded java.security.SecureClassLoader from /usr/lib/jvm/.../jre/lib/rt.jar]

244: [Loaded java.net.URLClassLoader from /usr/lib/jvm/.../jre/lib/rt.jar]

245: [Loaded sun.misc.Launcher$ExtClassLoader from /usr/lib/jvm/.../jre/lib/rt.jar]

247: [Loaded java.lang.ClassLoader$ParallelLoaders from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

256: [Loaded java.net.URLClassLoader$7 from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

259: [Loaded sun.misc.Launcher$ExtClassLoader$1 from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

317: [Loaded sun.misc.Launcher$AppClassLoader from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

318: [Loaded sun.misc.Launcher$AppClassLoader$1 from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

319: [Loaded java.lang.SystemClassLoaderAction from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

321: [Loaded java.net.URLClassLoader$1 from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

383: [Loaded de.pdbm.simple.Main from file:/home/bernd/lehre/skripte/classloader/workspace/class-loader-basics/bin/]

384: [Loaded java.lang.Void from /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.60-2.4.3.0.fc19.x86_64/jre/lib/rt.jar]

385: Hello World

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Delegation

I ClassLoader is super class of all class loaders

I ClassLoader contains: private final ClassLoader parent;
I Quite nice: parent comment (src.zip):

// The parent class loader for delegation

// Note: VM hardcoded the offset of this field, thus all

// new fields must be added *after* it.

I And Constructor for delegation to parent:
protected ClassLoader(ClassLoader parent)

I And method
protected Class<?> loadClass(String name,

boolean resolve)

I If parent null: bootstrap class loader

,
Bernd Müller 30.9.2014 20/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Delegation

I ClassLoader is super class of all class loaders
I ClassLoader contains: private final ClassLoader parent;

I Quite nice: parent comment (src.zip):
// The parent class loader for delegation

// Note: VM hardcoded the offset of this field, thus all

// new fields must be added *after* it.

I And Constructor for delegation to parent:
protected ClassLoader(ClassLoader parent)

I And method
protected Class<?> loadClass(String name,

boolean resolve)

I If parent null: bootstrap class loader

,
Bernd Müller 30.9.2014 20/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Delegation

I ClassLoader is super class of all class loaders
I ClassLoader contains: private final ClassLoader parent;
I Quite nice: parent comment (src.zip):

// The parent class loader for delegation

// Note: VM hardcoded the offset of this field, thus all

// new fields must be added *after* it.

I And Constructor for delegation to parent:
protected ClassLoader(ClassLoader parent)

I And method
protected Class<?> loadClass(String name,

boolean resolve)

I If parent null: bootstrap class loader

,
Bernd Müller 30.9.2014 20/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Delegation

I ClassLoader is super class of all class loaders
I ClassLoader contains: private final ClassLoader parent;
I Quite nice: parent comment (src.zip):

// The parent class loader for delegation

// Note: VM hardcoded the offset of this field, thus all

// new fields must be added *after* it.

I And Constructor for delegation to parent:
protected ClassLoader(ClassLoader parent)

I And method
protected Class<?> loadClass(String name,

boolean resolve)

I If parent null: bootstrap class loader

,
Bernd Müller 30.9.2014 20/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Delegation

I ClassLoader is super class of all class loaders
I ClassLoader contains: private final ClassLoader parent;
I Quite nice: parent comment (src.zip):

// The parent class loader for delegation

// Note: VM hardcoded the offset of this field, thus all

// new fields must be added *after* it.

I And Constructor for delegation to parent:
protected ClassLoader(ClassLoader parent)

I And method
protected Class<?> loadClass(String name,

boolean resolve)

I If parent null: bootstrap class loader

,
Bernd Müller 30.9.2014 20/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Class Loader Delegation

I ClassLoader is super class of all class loaders
I ClassLoader contains: private final ClassLoader parent;
I Quite nice: parent comment (src.zip):

// The parent class loader for delegation

// Note: VM hardcoded the offset of this field, thus all

// new fields must be added *after* it.

I And Constructor for delegation to parent:
protected ClassLoader(ClassLoader parent)

I And method
protected Class<?> loadClass(String name,

boolean resolve)

I If parent null: bootstrap class loader
,

Bernd Müller 30.9.2014 20/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Java Doc Method loadClass()

Loads the class with the specified binary name. The default implementation of this
method searches for classes in the following order:

1. Invoke findLoadedClass(String) to check if the class has already been loaded.

2. Invoke the loadClass method on the parent class loader. If the parent is null the
class loader built-in to the virtual machine is used, instead.

3. Invoke the findClass(String) method to find the class.

If the class was found using the above steps, and the resolve flag is true, this method
will then invoke the resolveClass(Class) method on the resulting Class object.

I Called parent first strategy

,
Bernd Müller 30.9.2014 21/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Java Doc Method loadClass()

Loads the class with the specified binary name. The default implementation of this
method searches for classes in the following order:

1. Invoke findLoadedClass(String) to check if the class has already been loaded.

2. Invoke the loadClass method on the parent class loader. If the parent is null the
class loader built-in to the virtual machine is used, instead.

3. Invoke the findClass(String) method to find the class.

If the class was found using the above steps, and the resolve flag is true, this method
will then invoke the resolveClass(Class) method on the resulting Class object.

I Called parent first strategy

,
Bernd Müller 30.9.2014 21/55

Class Transformer: One of the Best-Kept Java Secrets

Class Loader

Delegation to AppClassLoader

public class Different { main (){

URL url = new URL("file ://.");

URLClassLoader loader1 = new URLClassLoader(new URL []{ url });

URLClassLoader loader2 = new URLClassLoader(new URL []{ url });

System.out.println(loader1.equals(loader2)); // false

System.out.println(loader1.getParent ()); // AppClassLoader

System.out.println(loader2.getParent ()); // AppClassLoader

Class <?> class1 = loader1.loadClass(CLASS);

System.out.println(Different.class.equals(class1)); //false

Class <?> class2 = loader2.loadClass(CLASS);

System.out.println(class2.equals(class1)); // true

System.out.println(class1.getClassLoader ()); // AppClassLoader

System.out.println(class2.getClassLoader ()); // AppClassLoader

,
Bernd Müller 30.9.2014 22/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Pre-Main

or

Is there Life before main() ?

,
Bernd Müller 30.9.2014 23/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Package java.lang.instrument

I Package java.lang.instrument was introduced with Java 5

I From Java doc:

”
Provides services that allow Java programming language agents to instrument

programs running on the JVM. The mechanism for instrumentation is
modification of the byte-codes of methods.“

I Wikipedia Instrumentation (computer programming):

”
. . . instrumentation refers to an ability to monitor or measure the level of a

product’s performance, to diagnose errors and to write trace information. . . .“
I Intended for monitoring (as per Wikipedia)
I Can be used for arbitrary tasks (e.g. by JPA provider, test coverage tools, . . .)

,
Bernd Müller 30.9.2014 24/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Package java.lang.instrument

I Package java.lang.instrument was introduced with Java 5
I From Java doc:

”
Provides services that allow Java programming language agents to instrument

programs running on the JVM. The mechanism for instrumentation is
modification of the byte-codes of methods.“

I Wikipedia Instrumentation (computer programming):

”
. . . instrumentation refers to an ability to monitor or measure the level of a

product’s performance, to diagnose errors and to write trace information. . . .“
I Intended for monitoring (as per Wikipedia)
I Can be used for arbitrary tasks (e.g. by JPA provider, test coverage tools, . . .)

,
Bernd Müller 30.9.2014 24/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Package java.lang.instrument

I Package java.lang.instrument was introduced with Java 5
I From Java doc:

”
Provides services that allow Java programming language agents to instrument

programs running on the JVM. The mechanism for instrumentation is
modification of the byte-codes of methods.“

I Wikipedia Instrumentation (computer programming):

”
. . . instrumentation refers to an ability to monitor or measure the level of a

product’s performance, to diagnose errors and to write trace information. . . .“

I Intended for monitoring (as per Wikipedia)
I Can be used for arbitrary tasks (e.g. by JPA provider, test coverage tools, . . .)

,
Bernd Müller 30.9.2014 24/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Package java.lang.instrument

I Package java.lang.instrument was introduced with Java 5
I From Java doc:

”
Provides services that allow Java programming language agents to instrument

programs running on the JVM. The mechanism for instrumentation is
modification of the byte-codes of methods.“

I Wikipedia Instrumentation (computer programming):

”
. . . instrumentation refers to an ability to monitor or measure the level of a

product’s performance, to diagnose errors and to write trace information. . . .“
I Intended for monitoring (as per Wikipedia)

I Can be used for arbitrary tasks (e.g. by JPA provider, test coverage tools, . . .)

,
Bernd Müller 30.9.2014 24/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Package java.lang.instrument

I Package java.lang.instrument was introduced with Java 5
I From Java doc:

”
Provides services that allow Java programming language agents to instrument

programs running on the JVM. The mechanism for instrumentation is
modification of the byte-codes of methods.“

I Wikipedia Instrumentation (computer programming):

”
. . . instrumentation refers to an ability to monitor or measure the level of a

product’s performance, to diagnose errors and to write trace information. . . .“
I Intended for monitoring (as per Wikipedia)
I Can be used for arbitrary tasks (e.g. by JPA provider, test coverage tools, . . .)

,
Bernd Müller 30.9.2014 24/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Package Specification java.lang.instrument

”
An agent is deployed as a JAR file. An attribute in the JAR file manifest specifies the

agent class which will be loaded to start the agent. For implementations that support a
command-line interface, an agent is started by specifying an option on the
command-line. Implementations may also support a mechanism to start agents some
time after the VM has started. For example, an implementation may provide a
mechanism that allows a tool to attach to a running application, and initiate the
loading of the tool’s agent into the running application. The details as to how the load
is initiated, is implementation dependent.“

I Central: the agent

,
Bernd Müller 30.9.2014 25/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Agent

I Deployed as JAR file

I Manifest attribute defines agent class
I Alternatives to start agent

I Command line at VM start (required for command line implementations)
I After VM start by some not specified binding (optional and implementation

dependent)

,
Bernd Müller 30.9.2014 26/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Agent

I Deployed as JAR file

I Manifest attribute defines agent class

I Alternatives to start agent

I Command line at VM start (required for command line implementations)
I After VM start by some not specified binding (optional and implementation

dependent)

,
Bernd Müller 30.9.2014 26/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Agent

I Deployed as JAR file

I Manifest attribute defines agent class
I Alternatives to start agent

I Command line at VM start (required for command line implementations)
I After VM start by some not specified binding (optional and implementation

dependent)

,
Bernd Müller 30.9.2014 26/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Agent

I Deployed as JAR file

I Manifest attribute defines agent class
I Alternatives to start agent

I Command line at VM start (required for command line implementations)

I After VM start by some not specified binding (optional and implementation
dependent)

,
Bernd Müller 30.9.2014 26/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Instrumentation

Agent

I Deployed as JAR file

I Manifest attribute defines agent class
I Alternatives to start agent

I Command line at VM start (required for command line implementations)
I After VM start by some not specified binding (optional and implementation

dependent)

,
Bernd Müller 30.9.2014 26/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Start Agent via Command Line

I Syntax: -javaagent:jarpath[=options]

I Allowed multiple times ⇒ multiple agents
I Manifest contains attribute Premain-Class
I Agent class contains premain() method
I After VM is initialized all premain() methods are executed in sequence, then

main() method
I Two signatures allowed:

public static void premain(String agentArgs ,

Instrumentation inst);

public static void premain(String agentArgs);

I Second called only if first doesn’t exist

,
Bernd Müller 30.9.2014 27/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Start Agent via Command Line

I Syntax: -javaagent:jarpath[=options]
I Allowed multiple times ⇒ multiple agents

I Manifest contains attribute Premain-Class
I Agent class contains premain() method
I After VM is initialized all premain() methods are executed in sequence, then

main() method
I Two signatures allowed:

public static void premain(String agentArgs ,

Instrumentation inst);

public static void premain(String agentArgs);

I Second called only if first doesn’t exist

,
Bernd Müller 30.9.2014 27/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Start Agent via Command Line

I Syntax: -javaagent:jarpath[=options]
I Allowed multiple times ⇒ multiple agents
I Manifest contains attribute Premain-Class

I Agent class contains premain() method
I After VM is initialized all premain() methods are executed in sequence, then

main() method
I Two signatures allowed:

public static void premain(String agentArgs ,

Instrumentation inst);

public static void premain(String agentArgs);

I Second called only if first doesn’t exist

,
Bernd Müller 30.9.2014 27/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Start Agent via Command Line

I Syntax: -javaagent:jarpath[=options]
I Allowed multiple times ⇒ multiple agents
I Manifest contains attribute Premain-Class
I Agent class contains premain() method

I After VM is initialized all premain() methods are executed in sequence, then
main() method

I Two signatures allowed:

public static void premain(String agentArgs ,

Instrumentation inst);

public static void premain(String agentArgs);

I Second called only if first doesn’t exist

,
Bernd Müller 30.9.2014 27/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Start Agent via Command Line

I Syntax: -javaagent:jarpath[=options]
I Allowed multiple times ⇒ multiple agents
I Manifest contains attribute Premain-Class
I Agent class contains premain() method
I After VM is initialized all premain() methods are executed in sequence, then

main() method

I Two signatures allowed:

public static void premain(String agentArgs ,

Instrumentation inst);

public static void premain(String agentArgs);

I Second called only if first doesn’t exist

,
Bernd Müller 30.9.2014 27/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Start Agent via Command Line

I Syntax: -javaagent:jarpath[=options]
I Allowed multiple times ⇒ multiple agents
I Manifest contains attribute Premain-Class
I Agent class contains premain() method
I After VM is initialized all premain() methods are executed in sequence, then

main() method
I Two signatures allowed:

public static void premain(String agentArgs ,

Instrumentation inst);

public static void premain(String agentArgs);

I Second called only if first doesn’t exist

,
Bernd Müller 30.9.2014 27/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Agent start via command line (cont’d)

I Optional agentmain() method to use after VM start

I If start via command line agentmain() is not called

I Agent loaded by system class loader

I Each agent get’s his parameters by agentArgs parameter. One String, e.g. agent
has to parse himself

I If agent can not be loaded or premain() method does not exist VM is stopped

I Exceptions in premain() method also terminates VM

,
Bernd Müller 30.9.2014 28/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Agent start via command line (cont’d)

I Optional agentmain() method to use after VM start

I If start via command line agentmain() is not called

I Agent loaded by system class loader

I Each agent get’s his parameters by agentArgs parameter. One String, e.g. agent
has to parse himself

I If agent can not be loaded or premain() method does not exist VM is stopped

I Exceptions in premain() method also terminates VM

,
Bernd Müller 30.9.2014 28/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Agent start via command line (cont’d)

I Optional agentmain() method to use after VM start

I If start via command line agentmain() is not called

I Agent loaded by system class loader

I Each agent get’s his parameters by agentArgs parameter. One String, e.g. agent
has to parse himself

I If agent can not be loaded or premain() method does not exist VM is stopped

I Exceptions in premain() method also terminates VM

,
Bernd Müller 30.9.2014 28/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Agent start via command line (cont’d)

I Optional agentmain() method to use after VM start

I If start via command line agentmain() is not called

I Agent loaded by system class loader

I Each agent get’s his parameters by agentArgs parameter. One String, e.g. agent
has to parse himself

I If agent can not be loaded or premain() method does not exist VM is stopped

I Exceptions in premain() method also terminates VM

,
Bernd Müller 30.9.2014 28/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Agent start via command line (cont’d)

I Optional agentmain() method to use after VM start

I If start via command line agentmain() is not called

I Agent loaded by system class loader

I Each agent get’s his parameters by agentArgs parameter. One String, e.g. agent
has to parse himself

I If agent can not be loaded or premain() method does not exist VM is stopped

I Exceptions in premain() method also terminates VM

,
Bernd Müller 30.9.2014 28/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Agent start via command line (cont’d)

I Optional agentmain() method to use after VM start

I If start via command line agentmain() is not called

I Agent loaded by system class loader

I Each agent get’s his parameters by agentArgs parameter. One String, e.g. agent
has to parse himself

I If agent can not be loaded or premain() method does not exist VM is stopped

I Exceptions in premain() method also terminates VM

,
Bernd Müller 30.9.2014 28/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something

I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier
I Mark paths to compute code coverage in unit tests
I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier
I Mark paths to compute code coverage in unit tests
I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor

I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier
I Mark paths to compute code coverage in unit tests
I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)

I Delete final modifier
I Mark paths to compute code coverage in unit tests
I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier

I Mark paths to compute code coverage in unit tests
I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier
I Mark paths to compute code coverage in unit tests

I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier
I Mark paths to compute code coverage in unit tests
I . . .

I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

What can we do with that?

I Already mentioned: instrument something
I E.g. to

I Monitor
I Build proxies (JPA: associations, automatic dirty checking,. . .)
I Delete final modifier
I Mark paths to compute code coverage in unit tests
I . . .
I In general: attach desirable behavior afterwards and only if needed

,
Bernd Müller 30.9.2014 29/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Monitoring Example: Number of Method Invocations

public class ClassToMonitor {

public void foo() {

// something

}

}

I Task: Count number of foo() invocations

,
Bernd Müller 30.9.2014 30/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Monitoring Example: Counter and Main

public class Monitor {

public static int counter = 0;

}

public class Main {

public static void main(String [] args)

throws Exception {

System.out.println("Counter before loop: " + Monitor.counter);

ClassToMonitor classToMonitor = new ClassToMonitor ();

for (int i = 0; i < 1000; i++) {

classToMonitor.foo ();

}

System.out.println("Counter after loop: " + Monitor.counter);

}

}

,
Bernd Müller 30.9.2014 31/55

Class Transformer: One of the Best-Kept Java Secrets

Pre-Main

Start Agent via Command Line

Monitoring Example: the Agent

public class MonitorAgent {

public static void premain(String agentArgs ,

Instrumentation instrumentation) {

instrumentation.addTransformer(new MonitorTransformer ());

}

}

In MANIFEST.MF:

Premain -Class: de.pdbm.MonitorAgent

,
Bernd Müller 30.9.2014 32/55

Monitoring Example: Instrumentation with Javassist

public class MonitorTransformer

implements ClassFileTransformer {

public byte[] transform(ClassLoader loader , String className ,

Class <?> classBeingRedefined , ProtectionDomain protectionDomain ,

byte[] classfileBuffer) throws IllegalClassFormatException {

if (className.equals("de/pdbm/ClassToMonitor")) {

ClassPool pool = ClassPool.getDefault ();

try {

CtClass cc = pool.get("de.pdbm.ClassToMonitor");

CtMethod method = cc.getDeclaredMethod("foo");

method.insertBefore("de.pdbm.Monitor.counter ++;");

return cc.toBytecode ();

} catch (NotFoundException | CannotCompileException | IOException e) {

...

}

}

return classfileBuffer; // other classes unchanged

}

}

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Attach API

or

How to talk with a VM ?

,
Bernd Müller 30.9.2014 34/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Recap from Instrumentation Package

”
. . . Implementations may also support a mechanism to start agents some time after

the VM has started. For example, an implementation may provide a mechanism that
allows a tool to attach to a running application, and initiate the loading of the tool’s
agent into the running application. The details as to how the load is initiated, is
implementation dependent.“

I Attention: implementation dependent

I But: available in HotSpot, JRockit, IBM SDK, SAP SDK

I Interface by abstract class VirtualMachine in package com.sun.tools.attach

contained in tools.jar

,
Bernd Müller 30.9.2014 35/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Java Doc class VirtualMachine

”
A VirtualMachine represents a Java virtual machine to which this Java virtual

machine has attached. The Java virtual machine to which it is attached is sometimes
called the target virtual machine, or target VM. An application (typically a tool such as
a managemet console or profiler) uses a VirtualMachine to load an agent into the
target VM. For example, a profiler tool written in the Java Language might attach to a
running application and load its profiler agent to profile the running application. “

I Factory method attach(<pid>) to get attached instance

I Method loadAgent(<agent>,<args>) to load agent and to start agent (method
agentmain())

,
Bernd Müller 30.9.2014 36/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Agent with agentmain()

I Agent

public static void agentmain(String agentArgs ,

Instrumentation inst);

public static void agentmain(String agentArgs);

I Manifest sets attribute Agent-Class

I Attribute Can-Redefine-Classes true if redefinition (new class definition)

I Attribute Can-Retransform-Classes true if retransformation (change existing
byte code)

,
Bernd Müller 30.9.2014 37/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Example: Change Method and Reload

public class ClassToBeRedefined {

public void saySomething () {

System.out.println("foo");

// System.out.println ("bar ");

}

}

,
Bernd Müller 30.9.2014 38/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Example: Cange Method and Reload (cont’d)

public class Agent {

private static Instrumentation instrumentation = null;

public static void agentmain(String agentArgument ,

Instrumentation instrumentation) {

Agent.instrumentation = instrumentation;

}

public static void redefineClasses(ClassDefinition ... definitions) throws Exception {

if (Agent.instrumentation == null) {

throw new RuntimeException("Agent not started. Instrumentation not possible");

}

Agent.instrumentation.redefineClasses(definitions);

}

}

,
Bernd Müller 30.9.2014 39/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Example: Change Method and Reload (cont’d)

public class Main {

public static void main(String [] args) throws Exception {

ClassToBeRedefined ctbr = new ClassToBeRedefined ();

ctbr.saySomething ();

InputStream is = ctbr.getClass (). getClassLoader ()

// class ClassToBeRedefined:

.getResourceAsStream("dummy");

byte[] classBytes = classInputStreamToByteArray(is);

ClassDefinition classDefinition =

new ClassDefinition(ctbr.getClass(), classBytes);

loadAgent ();

Agent.redefineClasses(classDefinition);

ctbr.saySomething ();

}

,
Bernd Müller 30.9.2014 40/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Example: Change Method and Reload (cont’d)

private static void loadAgent () {

String nameOfRunningVM = ManagementFactory

.getRuntimeMXBean (). getName ();

int p = nameOfRunningVM.indexOf(’@’);

String pid = nameOfRunningVM.substring (0, p);

try {

VirtualMachine vm = VirtualMachine.attach(pid);

vm.loadAgent(JAR_FILE_PATH , "");

vm.detach ();

} catch (Exception e) {

...

}

}

,
Bernd Müller 30.9.2014 41/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Seeing is believing . . .

Demo

,
Bernd Müller 30.9.2014 42/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Java Doc redefineClasses() I

I This method is used to replace the definition of a class without reference to the
existing class file bytes, as one might do when recompiling from source for
fix-and-continue debugging. Where the existing class file bytes are to be
transformed (for example in bytecode instrumentation) retransformClasses should
be used.

I This method operates on a set in order to allow interdependent changes to more
than one class at the same time (a redefinition of class A can require a
redefinition of class B).

,
Bernd Müller 30.9.2014 43/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Java Doc redefineClasses() II
I If a redefined method has active stack frames, those active frames continue to run

the bytecodes of the original method. The redefined method will be used on new
invokes.

I This method does not cause any initialization except that which would occur
under the customary JVM semantics. In other words, redefining a class does not
cause its initializers to be run. The values of static variables will remain as they
were prior to the call.

I Instances of the redefined class are not affected.

,
Bernd Müller 30.9.2014 44/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Redefinition

Java Doc redefineClasses() III
I The redefinition may change method bodies, the constant pool and attributes.

The redefinition must not add, remove or rename fields or methods, change the
signatures of methods, or change inheritance. These restrictions maybe be lifted in
future versions. The class file bytes are not checked, verified and installed until
after the transformations have been applied, if the resultant bytes are in error this
method will throw an exception.

,
Bernd Müller 30.9.2014 45/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Retransformation

I Retransformation also possible

I Set manifest attribute Can-Retransform-Classes to true

I Register Transformer:
Instrumentation.addTransformer(ClassFileTransformer transformer)

I Call appropriate method:
Instrumentation.retransformClasses(Class<?>... classes)

I Yes — it’s that simple !

,
Bernd Müller 30.9.2014 46/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Retransformation

I Retransformation also possible

I Set manifest attribute Can-Retransform-Classes to true

I Register Transformer:
Instrumentation.addTransformer(ClassFileTransformer transformer)

I Call appropriate method:
Instrumentation.retransformClasses(Class<?>... classes)

I Yes — it’s that simple !

,
Bernd Müller 30.9.2014 46/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Retransformation

I Retransformation also possible

I Set manifest attribute Can-Retransform-Classes to true

I Register Transformer:
Instrumentation.addTransformer(ClassFileTransformer transformer)

I Call appropriate method:
Instrumentation.retransformClasses(Class<?>... classes)

I Yes — it’s that simple !

,
Bernd Müller 30.9.2014 46/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Retransformation

I Retransformation also possible

I Set manifest attribute Can-Retransform-Classes to true

I Register Transformer:
Instrumentation.addTransformer(ClassFileTransformer transformer)

I Call appropriate method:
Instrumentation.retransformClasses(Class<?>... classes)

I Yes — it’s that simple !

,
Bernd Müller 30.9.2014 46/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Retransformation

I Retransformation also possible

I Set manifest attribute Can-Retransform-Classes to true

I Register Transformer:
Instrumentation.addTransformer(ClassFileTransformer transformer)

I Call appropriate method:
Instrumentation.retransformClasses(Class<?>... classes)

I Yes — it’s that simple !

,
Bernd Müller 30.9.2014 46/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Example:
”
Pass all Unit Tests“

public class ClassToTest {

public String getTheCanonicalClassName () {

return "Wrong name";

// return this.getClass (). getCanonicalName ();

}

public int add(int a, int b) {

return a * b;

// return a + b;

}

}

,
Bernd Müller 30.9.2014 47/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

The Tests

public class JunitTests {

@Test

public void testClassName () {

ClassToTest ctt = new ClassToTest ();

Assert.assertEquals("Wrong class name",

ClassToTest.class.getCanonicalName (),

ctt.getTheCanonicalClassName ());

}

@Test

public void testAdd () {

ClassToTest ctt = new ClassToTest ();

Assert.assertEquals("Wrong sum", (3 + 4), ctt.add(3, 4));

}

}

,
Bernd Müller 30.9.2014 48/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

The Transformer

public class JunitTransformer implements ClassFileTransformer {

@Override

public byte[] transform(ClassLoader loader , String className ,

Class <?> classBeingRedefined , ProtectionDomain protectionDomain ,

byte[] classfileBuffer) throws IllegalClassFormatException {

if (className.equals("org/junit/Assert")) {

return transformAssert (); // w/o Exception -Handling

}

// other classes unmodified

return classfileBuffer;

}

...

}

,
Bernd Müller 30.9.2014 49/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

The Transformer (cont’d)

private byte[] transformAssert () throws Exception {

ClassPool pool = ClassPool.getDefault ();

CtClass cc = pool.get("org.junit.Assert");

for (CtMethod ctMethod : cc.getMethods ()) {

if (ctMethod.getName (). startsWith("assert")) {

ctMethod.setBody("return;");

} else {

// the rest (equals(), clone(), wait(), ...)

}

}

return cc.toBytecode ();

}

,
Bernd Müller 30.9.2014 50/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Agent

public class TransformerAgent {

public static void agentmain(String agentArgs , Instrumentation instrumentation) {

instrumentation.addTransformer(new JunitTransformer (), true);

Class <?>[] classes = instrumentation.getAllLoadedClasses ();

for (Class <?> c : classes) {

if (c.getName (). equals("org.junit.Assert")) {

try {

instrumentation.retransformClasses(c);

} catch (UnmodifiableClassException e) {

e.printStackTrace (); System.err.println(c + " not modifiable");

}

}

}

}

}

,
Bernd Müller 30.9.2014 51/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

And how to activate ?

public class ClassToTest {

static {

AgentLoader.loadAgent ();

}

public String getTheCanonicalClassName () {

return "Wrong name";

// return this.getClass (). getCanonicalName ();

}

public int add(int a, int b) {

return a * b;

// return a + b;

}

}

,
Bernd Müller 30.9.2014 52/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

Seeing is believing . . .

Demo

,
Bernd Müller 30.9.2014 53/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

What is all this for ?

I First: to have some fun

I Second: to start salary negotiations ;-)

I Third: to learn

I Fourth: . . .

,
Bernd Müller 30.9.2014 54/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

What is all this for ?

I First: to have some fun

I Second: to start salary negotiations ;-)

I Third: to learn

I Fourth: . . .

,
Bernd Müller 30.9.2014 54/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

What is all this for ?

I First: to have some fun

I Second: to start salary negotiations ;-)

I Third: to learn

I Fourth: . . .

,
Bernd Müller 30.9.2014 54/55

Class Transformer: One of the Best-Kept Java Secrets

Attach API

Retransformation

What is all this for ?

I First: to have some fun

I Second: to start salary negotiations ;-)

I Third: to learn

I Fourth: . . .

,
Bernd Müller 30.9.2014 54/55

Class Transformer: One of the Best-Kept Java Secrets

Questions and Remarks

Questions and Remarks

,
Bernd Müller 30.9.2014 55/55

	Speaker Introduction
	Outline
	Motivation
	Class Loader
	Pre-Main
	Instrumentation
	Command Line

	Attach API
	Redefinition
	Retransformation

	Questions and Remarks

