-rege

Purely Functional Programming
on the JVM

Dierk KOnig
Canoo

N \f &
~omittie

Frege Is different

Frege Is very different

You would not believe
just how ditferent it Is!

Online REPL
http://try.frege-lang.org

Define a Function

frege> times a b =a * b
frege> times 3 4

12

frege> :type times

Num a => a -> a -> ad

Define a Function

frege> times a b = a * b
frege> (times 3) 4
function appl. m
12
tell the inferred
frege> :type times type

Num a => a ->(a -> a) thumb: ,two params

only 1 return type is
parameter! | a function!

of same numeric type

returning that type*

Reference a Function

frege> twotimes = times 2
frege> twotimes 3

6

frege> :t twotimes

Int -> Int

Reference a Function

- . N nd
frege> twotimes = times 2
rgument.

frege> twotimes 3 | Curvying®, ,schonfinkeling,
or ,,partial function

6 application®.
Concept invented by

frege> :t twotimes Clottlob Frege.

inferred types

Function Composition

frege> twotimes (threetimes 2)

12

frege> sixtimes = twotimes . threetimes
frege> sixtimes 2

frege> :t sixtimes

Int -> Int

Function Composition
frege> twotimes (threetimes 2)

12

frege> sixtimes = twotimes . threetimes

frege> sixtimes 2 (f - 9) (%)

frege> :t sixtimes

Int -> Int

Pattern Matching

frege> times @ (threetimes 2)
©

frege> times 0 b = ©

Pattern Matching

frege> times @ (threetimes 2)

0 unnecessarily evaluated

frege> times @ b = ©

| azy evaluation
frege> times O (length [1..])

endless sequence

evaluation would never stop

Pattern matching and
non-strict evaluation

to the rescue!

Pure Functions

Java

. What could
T foo(Pair<T,U> p) {..} WA

Frege

What could

'FOO . o (O(, B) -> A possibly happen?

Pure Functions

Java

Everything!

NPEs, state

T foo(Pair<T,U> p) {..} changes, endless

loops, missile

Frege launch,...

'FOO . o (Q,B) -> a (s returned

or

system error

Java Interoperability

Java -> Frege
Scripting: JSR 223

Service:
compile *.fr file
put on javac classpath
call static method

Frege -> Java

Declaring the messiness.

data Date = native java.util.Date where
native new i () 10 (MutableIO Date) —— new Date()
native toString :: Mutable s Date ST s String —— d.toString()

This (s a key distinction between Frege and

previous efforts to port Haskell to the JVM.

Some Cool Stuft

/Z10pIng
[]
[]

addzip (x:xs) (y:ys) =
(X + y : addzip Xxs ys)

addzip []
addzip |[]

Zipping

addZip [] — = [] Pattern matching
add21p - [] = [] feels like Prolog

addzip (x:xs) (y:ys) =
(X + y : addzip xs ys)

use as

addzip [1,2,3]

[1 , 2, 3] Why only for the (+) function?
== [2J 4, 6] We could be more general...

High Order Functions

zipWith £ [] _ = []
[]

zipWith £ []

zipWith + (x:xs) (y:ys) =
(f x y : zipWith xs ys)

High Order Functions

zipWith £ [] = []
zipWith £ [] = []

zipWith f (x:xs) (y:ys) =
(f x y : zipWith xs ys)

use as

ZipWith (+) [1,2,3] and, yes we can now define

addzip =

[1,2,3] ZipWith (+)

== [2,4,6]

FIbonaccl

fib = @: 1: addzip fib (tail fib)

use as a new solution approach
take 60 fib fib ©:1 .

tail 1 ..
zip 1 ..

FIbonaccl

fib = @: 1: addzip fib (tail fib)

use as a new solution approach
take 60 fib fib @ 1:1 ..

tail 1 ..
Z1ip 2 ..

FIbonaccl

fib = @: 1: addzip fib (tail fib)

use as a new solution approach
take 60 fib fib 01 1:2 ..

tail 2 ..
Z1ip 3 ..

FIbonaccl

fib = @: 1: addzip fib (tail fib)

use as a new solution approach
take 60 fib fib © 11 2:3 ..

tail 3 ..
Z1ip 5 ..

| ist Comprehension
Pythagorean triples: a2 + b2 = c2
[(m*m-n*n, 2*m*n, m*m+n*n)
|l m<- [2..], n<- [1..m-1]

|

| ist Comprehension

Pythagorean triples: a2 + b2 = c2

[(m*m-n*n, 2*m*n, m*m+n*n) m

|l m <- [2..], n <- [1..m-1]

endless production think ,,nested loop*

QuickCheck

-- An AVL tree 1s balanced so
that the height of the left and
right subtree differ by at most 1

p balance = forAll aTree
(\tree -> abs tree.balance < 2)

QuickCheck will create 50O different trees

covering all corner cases in creation and

validate the invariant. (from Frege source code)

Type System

Hindley-Milner
more info for the programmer
less work for the programmer
more useful programs compile
less bad programs compile

http://perl.plover.com/yak/typing/

Endless recursion in merge sort detected by the type system.

Keep the mess out!

omputation

omputation

Keep the mess out!

Mutable
/O

Ok, these are Monads. Be brave. Think of them as contexts

that the type system propagate and make un-escapable.

History

Java promise: ,No more pointers!”

But NullPointerExceptions (?)

Frege Is different

No More But
state no state (unless declared)
statements expressions (+ ,,do” notation)
Interfaces type classes

classes & objects

algebraic data types

Inheritance

polymorphism

null references

Maybe

and the [ist goes on...

-rege In comparison

Frege
Haskel I

Frege In comparison

Frege makes the Haskell spirit

accessible to the Java programmer

useful |
- Groovy

Java

and provides a new level of safety.

run computers
:

Frege

concept by
Simon Peyton-Jones apply logic

Whny FP matters

The intellectual challenge
The aesthetical enjoyment
Type system and modularity benefits

It may even be useful

»An investment in knowledge

always pays the best interest.

—Benjamin Franklin

How"?

http://www.frege-lang.org
stackoverftlow ,,frege®“ tag

https://github.com/Dierk/Real World Frege

Join the effort!

Haskell

Gottlob
Frege

"As | think about acts of integri grace,

| realise that there Is nothing in my¥knowledge
that compares with Erege’s dedication to truth...
It was almost supernuman.” —Bertrand Russel

"Not many people managed to create a revolution
in 100 ‘h‘t‘Frege did.” —Graham Priest

W \Q@\ “‘

Ttp:/s ' ww Ol)\\i¢ ié j’” V atch’?v_foITlYYu2bc

-/

|

4

http://www.youtube.com/watch?v=foITiYYu2bc

Dierk KOnig
Canoo

ol ..
o mittie

R

