Building a Reliable Remote
Communication Device
with Java ME 8

JavaOne San Francisco 2014 - CON2285
Leonardo Lima — V2COM (llima@v2com.mobi, @leomrlima)




About Leonardo Lima

» Software Development Manager at V2COM

« V2COM representative at the JCP-EC: Java Community
Process — Executive Committee

» Spec Lead - JSR 363 — Units of Measurement

* llima@v2com.mobi and/or @leomrlima



o l—————————
V2COM

* V2COM is a leading Latin American
provider of Smart Grid technologies and
Advanced Metering Infrastructure (AMI).
Our offer includes hardware, software
and services that can reduce losses and
increase water and energy efficiency,
currently connecting more than
1.000.000 devices.




Agenda

* The definition of reliable
* What it means to be a reliable device?

« Java ME 8 improvements
« What Java ME 8 brought to the game

» Java ME 8 applied

* Improvements, applied

* More improvements to come
 New JSRs and room for improvements



The definition of reliable

What it means to be a reliable device?



What does reliable mean?

* re-li-a-ble (adjective): that may be relied on; dependable in
achievement, accuracy, honesty, etc.

* Do not fail!

* Do not lose data!
* Do not let others tamper with your data!



Do not fail!

* Protected against the environment

 Protected against hardware failures
 Protected against software failures

* Protected against attackers



Do not lose datal!

* It's the device mission to ensure the data acquired is safely
stored in itself.

* |lt's the device mission to ensure that data is safely transferred
to the backend services.



Do not let others mess with your data!

 Take into account all security aspects
 Authenticity: data you sent is sent from you, really
 Confidentiality: Only you and the right server sees the data

* Integrity: data received == data sent



Java ME 8 improvements

What Java ME 8 brought to the game



Improvements

« Language Improvements (less bugs!)

» Service Loader pattern
* Events and Inter-Midlet Communication

 Device I/O
» Security Improvements
» Shared Libraries

Java ME 8 (CLDC 8)




Shared Libraries (LIBlets)

« Can be uniquely updated, disabled/enabled.

» A shareable software component that one or more applications
MAY use at runtime

» Save static footprint size by enabling multiple application suites
to share the same common code without packaging them
redundantly

» Reduced download times for applications that declare
dependencies on shared components



Service Loader

» Enables creation of microservices inside your device

 Independent services that can be uniquely updated, disabled/
enabled.

* Monolithic firmware is now split into different services




Events

» Object driven communication

» Publisher/Subscriber pattern
* One-To-Many communication
« Asynchronous delivery

» Caveat: Events are (silently) discarded if there are no
subscribers



Inter-MIDlet Communication

* Raw, bidirectional socket communication
» Fast and Synchronous!

* Reliable one-to-one communication
* You know when the peer is there

» Just like “localhost”’ sockets



Network Security

» TLS protocol enhancements
» SecureConnection and SecureServerConnection support TLS 1.2
» SecureServerConnection provides the server-side of a TLS connection

* DTLS protocol support for TLS over UDP
» SecureDatagramConnection provides client-side support for DTLS



Application Provisioning & Management

» Application Management System (AMS) allows fine grained
control on what get installed

 App Management Agent manages local applications via the
AMS api




Device |/O

« Unified, object-oriented way to interact with 1/0

» Basic I/Os already mapped
» |2C, GPIO, SPI, UART, ADC, Watchdog, PWM, Pulse Counter

* Architecture is ready for extension with generic AbstractDevice,
DeviceProvider



Language improvements

* Improved collections

» Generics

» Autoboxing

« Static imports

« Enumerations

 Try with resources

 Better byte and string manipulation
* Events

* Logging



Java ME 8 applied

Improvements, applied to our use cases



Before...

* We had 3 big blocks of code, merged as one on deploy
» Hardcore for hardware abstraction
« Zion for commons infrastructure and AT
» App for application logic

* One big file to manage (OTAP)

« Java 1.3 language...
* Did | mean Latin?



... and now

* Multiple services and libraries
* Instead of big libraries

 Less boilerplate code
* Enum, foreach, try with resources makes it less verbose, more agile

» Less ancient code
 Easier for “desktop developers” to understand and join the fun

* Less “made in home” code
« Many pieces are now already in the platform, like Device /O, Events,
Logging
* Less code for us to mantain



Shared Libraries

Advanced String
Crypto / Hashes Queues & Byte
Manipulation

Units and
Measurements

Advanced Math Concurrency Device protocols Event and Bus




Services

(Safe) Storage Black Box Logging Watchdogs

Data acquisition Remote transfer System Power
(Application) Configuration management

WAN Resource Firmware Update

External Sensor Management Management Management




More improvements to come

New JSRs and room for improvements



JSR 363 — Units of Measurement

* JSR to beter type data that we acquire, targeting ME 8
* https://java.net/projects/unitsofmeasurement

import Jjavax.measure.quantity.*;
public class TemperatureRecord {
private Time timestamp;
private Temperature temperature;
private String sensor;
...getters, setters...

}



JSR 363 — Units of Measurement in JDK

» Otavio Santana (SoudJava, OpenJDK) is actively working in a
SE 8 port of the JSR!

» Streams, Lambda, High precision (BigDecimal): guaranteed!
» Reducers, sorters, summation, group and filters.

List<Quantity<Time>> sortNaturallist = times
.stream/()
.sorted (QuantityFunctions.sortNaturalDesc () )
.collect (Collectors.toList());



Room for improvement

 Configuration

» Concurrency utilities
« Standard protocols (MQTT, CoAP, JSON, HTTP, REST)




Q7




Thanks!

llima@v2com.mobi
@leomrlima

WWW.V2com.moDbi



