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Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for 
information purposes only, and may not be incorporated into any contract. It is not 
a commitment to deliver any material, code, or functionality, and should not be 
relied upon in making purchasing decisions. The development, release, and timing 
of any features or functionality described for Oracle’s products remains at the sole 
discretion of Oracle.
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Oracle Solaris Studio

Java One Sessions

Mon, 
5:30 – 6:30pm

Java Performance: Hardware, Structures, and Algorithms [CON2654], 
Hilton Imperial Ballroom A

Wed, 
3 – 4pm

Simplifying Development of Mixed-Language Java and C++ Applications 
[CON8109], Hilton Continental Ballroom B

OOW Sessions

Wed, 
4:45 – 5:30pm

Engineering Insights: Best Practices for Optimizing Oracle Software for Oracle 
Hardware [CON8108], Intercontinental Grand Ballroom C

Thurs, 
12 – 12:45pm

Code Analysis Tools for Achieving Consistent, Secure, and Reliable Product 
Quality [CON8009], Intercontinental B

Wed,
11:45 - 12:45pm

Create Quality, Secure, High-Performing Applications on Oracle Solaris 
[HOL9805],  Hotel Nikko - Mendocino I/II

• http://www.oracle.com/goto/solarisstudio
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Program Agenda

Where to look for performance

The impact of hardware

Appropriate data structures

Efficient implementations

Concluding remarks
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Where to Look for Performance

7



Copyright © 2014, Oracle and/or its affiliates. All rights reserved.  

• Overview 
captures where 
the threads 
spend time

• Need to identify 
chunks of “time” 
to reduce.
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Overview

On CPU

Waiting
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• Substantial system time spent on write of single byte
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Source Code View (High System Time)
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• Increasing size of writes (10x) reduces system time (10x)
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Source Code View (Reduced System Time)
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Timeline View

Sleeping

On CPU

User lock

User lock

User lock

User lock

User lock

• Sleep and User lock time often come from “idle” threads
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Hardware Counters

• Hardware counters = processor events
• Can “explain” observed performance
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High CPI Indicates Stalls

• Higher CPI indicates more stall time
• But time indicates benefit of fixing it
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The Impact of Hardware
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• JVM can take 
advantage of some 
characteristics
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Hardware and the JVM

Processor

Features

Memory

Instr’s

Quirks

Caches

TLBs
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• JVM converts 
bitCount to popc 
instruction
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Hardware Intrinsics
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Hardware Intrinsics in the VM

http://hg.openjdk.java.net/jdk8/jdk8/hotspot/file/87ee5ee27509/src/share/vm/opto/library_call.cpp 

http://hg.openjdk.java.net/jdk8/jdk8/hotspot/file/87ee5ee27509/src/share/vm/opto/library_call.cpp
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Inlining and optimisation

f1()

f2()

f3()

Java Call Stack

Machine Code

f1()f2()
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• High normally indicates memory stalls
Suggests data structure efficiency

• Low CPI is instruction issue limited.
Suggests algorithm efficiency
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Generalisation of CPI & Performance

CPI

High

Low
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• TLB maps to page in 
memory (KB or MB in 
size)

• Cache line fetched 
from page (often 64 
bytes)
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How Memory Works
Processor

TLB

Cache

Memory

Cache Line

Access cost 
100s of cycles
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• Increase data density
• Increase memory level parallelism
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Memory Use Strategies

Memory

Cache Line

Data for now
Data for soon

Memory

Cache Line

Data for now



Copyright © 2014, Oracle and/or its affiliates. All rights reserved.  

• Cost =

O(operations) +

O(cache misses) * cost/miss

• 1 cache miss ~= 100’s operations
• Worth adding operations to reduce cache misses
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Algorithm Cost
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Appropriate data structures
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• 40% of total time
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Application Profile (Machine View)
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• 20% of total time on code from one line
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Source View of Hot Code
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• Calls into HashTable to fetch result
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Routines Called by Hot Line
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• 20% of total time

27

Application Profile (User/Java View)
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• Look up = O(1)
• Cache misses = O(1)
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• Look up = O(1)
• Cache misses = O(1)
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ItemID is an Integer
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• ~300s less time, throughput increased by ~9%
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Application Profile with array
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Efficient implementations
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• ~12% of time
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Application Profile
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• Time spent iterating a HashMap
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Hot Source Code
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• Time spent iterating a HashMap
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Hot Call Tree
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• History is constantly changing
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History

History

New elements

Oldest elements

Append

Remove
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• Look up = O(log n) Cache misses = O(log n)
• Iteration = O(n) Cache misses = O(n)
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TreeMap
Root Node
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Every jump is a cache miss
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• Look up = O(log n) Cache misses = O(log n)
• Iteration = O(n), cache misses reduced by Wx (eg W=64)
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Using “Wide” Nodes
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Cache Line Utilisation
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• 300s less time -> ~7% gain

39

Application Profile with Wide Nodes
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Concluding Remarks
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Hardware Tuning Opportunities

• Automatic JVM use of intrinsics
• Developer’s knowledge of hardware
• Cache misses critical part of performance

 Efficient use of loaded data
 Minimise number of hops
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Q&A
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Comparing Constant Time Profiles

A A

B Bopt

A’

B’

Original
profile

Profile of
optimisation
and original
workload

New 
profile

• Unmodified code 
scales by S
S = A’ / A


