
Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

CON2654: Java Performance:
Hardware, Structures, and
Algorithms

• Charlie Hunt
HotSpot JVM Engineering

• Darryl Gove
Compiler Performance Engineering

• 29 September, 2014

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not
a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products remains at the sole
discretion of Oracle.

4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

5

Oracle Solaris Studio

Java One Sessions

Mon,
5:30 – 6:30pm

Java Performance: Hardware, Structures, and Algorithms [CON2654],
Hilton Imperial Ballroom A

Wed,
3 – 4pm

Simplifying Development of Mixed-Language Java and C++ Applications
[CON8109], Hilton Continental Ballroom B

OOW Sessions

Wed,
4:45 – 5:30pm

Engineering Insights: Best Practices for Optimizing Oracle Software for Oracle
Hardware [CON8108], Intercontinental Grand Ballroom C

Thurs,
12 – 12:45pm

Code Analysis Tools for Achieving Consistent, Secure, and Reliable Product
Quality [CON8009], Intercontinental B

Wed,
11:45 - 12:45pm

Create Quality, Secure, High-Performing Applications on Oracle Solaris
[HOL9805], Hotel Nikko - Mendocino I/II

• http://www.oracle.com/goto/solarisstudio

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Where to look for performance

The impact of hardware

Appropriate data structures

Efficient implementations

Concluding remarks

1

2

3

4

5

6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Where to Look for Performance

7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Overview
captures where
the threads
spend time

• Need to identify
chunks of “time”
to reduce.

8

Overview

On CPU

Waiting

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Substantial system time spent on write of single byte

9

Source Code View (High System Time)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Increasing size of writes (10x) reduces system time (10x)

10

Source Code View (Reduced System Time)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

11

Timeline View

Sleeping

On CPU

User lock

User lock

User lock

User lock

User lock

• Sleep and User lock time often come from “idle” threads

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

12

Hardware Counters

• Hardware counters = processor events
• Can “explain” observed performance

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

13

High CPI Indicates Stalls

• Higher CPI indicates more stall time
• But time indicates benefit of fixing it

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Impact of Hardware

14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• JVM can take
advantage of some
characteristics

15

Hardware and the JVM

Processor

Features

Memory

Instr’s

Quirks

Caches

TLBs

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• JVM converts
bitCount to popc
instruction

16

Hardware Intrinsics

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

17

Hardware Intrinsics in the VM

http://hg.openjdk.java.net/jdk8/jdk8/hotspot/file/87ee5ee27509/src/share/vm/opto/library_call.cpp

http://hg.openjdk.java.net/jdk8/jdk8/hotspot/file/87ee5ee27509/src/share/vm/opto/library_call.cpp

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

18

Inlining and optimisation

f1()

f2()

f3()

Java Call Stack

Machine Code

f1()f2()

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• High normally indicates memory stalls
Suggests data structure efficiency

• Low CPI is instruction issue limited.
Suggests algorithm efficiency

19

Generalisation of CPI & Performance

CPI

High

Low

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• TLB maps to page in
memory (KB or MB in
size)

• Cache line fetched
from page (often 64
bytes)

20

How Memory Works
Processor

TLB

Cache

Memory

Cache Line

Access cost
100s of cycles

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Increase data density
• Increase memory level parallelism

21

Memory Use Strategies

Memory

Cache Line

Data for now
Data for soon

Memory

Cache Line

Data for now

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Cost =

O(operations) +

O(cache misses) * cost/miss

• 1 cache miss ~= 100’s operations
• Worth adding operations to reduce cache misses

22

Algorithm Cost

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Appropriate data structures

23

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• 40% of total time

24

Application Profile (Machine View)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• 20% of total time on code from one line

25

Source View of Hot Code

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Calls into HashTable to fetch result

26

Routines Called by Hot Line

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• 20% of total time

27

Application Profile (User/Java View)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Look up = O(1)
• Cache misses = O(1)

28

HashTable

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Index

Array

Value

Hash Function

Collision

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Look up = O(1)
• Cache misses = O(1)

29

ItemID is an Integer

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

Data

Value

ItemId
Array

stock

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• ~300s less time, throughput increased by ~9%

30

Application Profile with array

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Efficient implementations

31

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• ~12% of time

32

Application Profile

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Time spent iterating a HashMap

33

Hot Source Code

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Time spent iterating a HashMap

34

Hot Call Tree

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• History is constantly changing

35

History

History

New elements

Oldest elements

Append

Remove

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Look up = O(log n) Cache misses = O(log n)
• Iteration = O(n) Cache misses = O(n)

36

TreeMap
Root Node

Left RightData

Value

Node
Left RightData

Value

Node
Left RightData

Value

Node
Left RightData

Value

Node
Left RightData

Value

Node
Left RightData

Value

Every jump is a cache miss

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• Look up = O(log n) Cache misses = O(log n)
• Iteration = O(n), cache misses reduced by Wx (eg W=64)

37

Using “Wide” Nodes

Node
Left RightData

Value

Data

Value

Data

Value

Node
Left RightData

Value

Data

Value

Data

Value

Node
Left RightData

Value

Data

Value

Data

Value

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

38

Cache Line Utilisation

Node
Left RightData

Value

Data

Value

Data

Value

Root Node
Left RightData

Value

Node

Wide Node

Cache Line

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

• 300s less time -> ~7% gain

39

Application Profile with Wide Nodes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Concluding Remarks

40

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Hardware Tuning Opportunities

• Automatic JVM use of intrinsics
• Developer’s knowledge of hardware
• Cache misses critical part of performance

 Efficient use of loaded data
 Minimise number of hops

41

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Q&A

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

43

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Comparing Constant Time Profiles

A A

B Bopt

A’

B’

Original
profile

Profile of
optimisation
and original
workload

New
profile

• Unmodified code
scales by S
S = A’ / A

