

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

50 JMS 2.0 Best Practices in 50 Minutes
CON3153

Nigel Deakin
Oracle
1 Oct 2014

Email: nigel.deakin@oracle.com
Twitter: @jms_spec

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Getting the best out of JMS 2.0

• Introductory-level session

• Assumes little or no JMS knowledge

• Discusses only JMS 2.0

– Though most of it applies to JMS 1.1 as well

• If you know JMS 1.1 this session will introduce you to JMS 2.0

About this session

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JMS Best Practices

Is JMS the best messaging API for your application?

Use the best JMS API

Use the right JMS features

Use JMS in the easiest way

Get the most out of JMS: advanced features

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

1. When to use JMS

• When you want to allow the sending and receiving of the message to occur
at different times

• When you don't want sender and receiver to have to know about each
other

• When sender and receiver are usually in separate running programs

• When you want pub/sub or point-to-point messaging

• When you don't want messages to be lost if there's a failure

• When you want your application to work with different messaging products

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

2. When not to use JMS

• Asynchronous EJB calls

– A simpler alternative to sending a message to a MDB in the same app server

– Less scalability, failure-tolerance etc

• CDI events
– Simple Java EE observer/observable mechanism

– Sender and receiver must be the same JVM

– Sending method blocks whilst event is delivered to all listeners

– If a listener throws an exception,
• it is thrown directly to the sender

• no more listeners receive the message (event)

Other Java EE technologies may match your needs better

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JMS Best Practices

Is JMS the best messaging API for your application?

Use the best JMS API

Use the right JMS features

Use JMS in the easiest way

Get the most out of JMS: advanced features

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

3. Use the right JMS API

Simplified API

JMS 2.0+

Legacy API for
point-to-point

JMS 1.0+

Legacy API for
publish-and-
subscribe

JMS 1.0+

QueueConnectionFactory
QueueConnection

QueueSession
QueueSender

QueueReceiver
Message

ConnectionFactory
JMSContext

JMSProducer
JMSConsumer

Message

TopicConnectionFactory
TopicConnection

TopicSession
TopicPublisher

TopicSubscriber
Message

ConnectionFactory
JMSContext

JMSProducer
JMSConsumer

Message

Classic API

JMS 1.1+

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

public void sendMessage(String text) throws NamingException {

InitialContext namingContext = new InitialContext(props);

ConnectionFactory cf = (ConnectionFactory) namingContext.lookup("jms/myCF");

Queue messageQueue = (Queue)namingContext.lookup("jms/myQueue");

try (JMSContext context=connectionFactory.createContext();){

TextMessage message = context.createTextMessage(text);
context.createProducer().send(dataQueue,message);

}
}

4. Using a JMSContext to send a message to a queue
(Java SE)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

@Resource(lookup="jms/connectionFactory") ConnectionFactory connectionFactory;

@Resource(lookup="jms/messageQueue") Queue messageQueue;

public void sendMessage (String text) {

try (JMSContext context = connectionFactory.createContext();){
TextMessage message = context.createTextMessage(text);
context.createProducer().send(messageQueue,message);

}
}

5. Using a JMSContext to send a message to a queue
(Java EE)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

6. Getting your ConnectionFactory

• A ConnectionFactory is the starting object which contains all the
information needed to connect to the JMS server

• The way you create and configure these objects is not standard, so create
them separately, bind them in JNDI and look them up from your application

• In Java SE, use JNDI API to look up the connection factory
 InitialContext ic = new InitialContext(props);
ConnectionFactory cf = (ConnectionFactory)ic.lookup("jms/myCF")

• In Java EE, inject the connection factory using @Resource
@Resource(lookup="jms/myCF") ConnectionFactory cf1;
@Resource ConnectionFactory cf2; // uses the platform default connection factory

Use JNDI to keep configuration details out of your application

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

7. Getting your Queue or Topic object

• A Queue or Topic object defines the queue or topic in the server where you
want to send or receive messages

• The way you create and configure these objects is not standard, so create
them separately, bind them in JNDI and look them up from your application

• In Java SE, use JNDI API to look up the queue or topic
 InitialContext ic = new InitialContext(props);
javax.jms.Queue myQueue = (Queue)ic.lookup("jms/myQueue")

• In Java EE, inject the queue or topic using @Resource
@Resource(lookup="jms/myQueue") javax.jms.Queue myQueue;

Use JNDI to keep configuration details out of your application

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

8. Getting your JMSContext

• A JMSContext represents an active connection to the JMS server

• Create it from a ConnectionFactory...and close after use
JMSContext context = connectionFactory.createContext(sessionMode);
...
context.close

• For convenience, use a try-with-resources block
try (JMSContext context = connectionFactory.createContext();){
 ...
}
// close() called automatically at end of block or if exception thrown

Create it from the connection factory - and close it after use

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

9. Using a JMSContext to send a message

// start with a JMSContext
JMSContext context = ...

// ...and a queue or topic
Queue myQueue = ...

// create your message and set its payload
TextMessage myMessage = context.createTextMessage("Hello");

// send the message to the queue
context.createProducer().send(myQueue,myMessage);

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

@Inject @JMSConnectionFactory("jms/connectionFactory") JMSContext context;

@Resource(lookup="jms/messageQueue") Queue messageQueue;

public void sendMessage (String text) {

TextMessage message = context.createTextMessage(text);
context.createProducer().send(messageQueue,message);

}

// context is automatically closed at the end of the Java EE transaction (if active)
// or else at the end of the "request" (e.g. remote EJB call or MDB invocation)

10. Getting a JMSContext object by injection (Java EE only)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

11. Receiving a message: sync or async?

• Blocking call

– Fetch the next message from the queue or topic

– Blocks until a message received

– Best when you are expecting a particular message (e.g. a reply to a request)

• Asynchronous listener

– JMS calls your code when the next message is available

– Event-driven code is generally better
• Particularly in a Java EE app server when you can process messages in multiple threads

– Slightly less flexible in a Java EE app server

Blocking call or asynchronous listener? Best practice depends on your needs.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

// start with a JMSContext
JMSContext context = ...

// ...and a queue or topic
Queue myQueue = ...

// create a consumer on the queue
JMSConsumer consumer = context.createConsumer(messageQueue);

// fetch the message, blocking for up to 1000ms
Message message = consumer.receive(1000);

// extract the payload from the message
String payload = ((TextMessage)message).getText();

// close the JMSContext (if we've finished using it)
context.close();

12. Receiving a message with a blocking call

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

13. Don't block for ever!

• receive(timeout)
– best, can always repeat the call

• receive()
– danger of blocking for ever

• receiveNoWait()
– returns a message without blocking if one is immediately available

– don't use, definition is ambiguous

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

14. Receiving messages asynchronously

• Java SE:

– Instantiate an object which implements the javax.jms.MessageListener interface

– Register it with JMS by calling setMessageListener

• Java EE:
– Use a message-driven bean instead

– Calling setMessageListener is discouraged and not portable

Different in Java SE and Java EE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Define the MessageListener class
public class MyListener
 implements javax.jms.MessageListener {

 public void onMessage(Message message) {
 TextMessage tm = (TextMessage)message;
 try {
 text = tm.getText();
 System.out.println("Got: "+text);
 } catch (JMSException e) {}

 }

}

• Start receiving messages
public void startListening() {
 ConnectionFactory cf = ...
 Queue messageQueue =
 context = cf.createContext();
 consumer =
 context.createConsumer(messageQueue);
 MyListener listener = new MyListener();
 consumer.setMessageListener(listener);
}

• Stop receiving messages
public void stopListening(){
 consumer.close();
}

15. Receiving messages asynchronously
with a MessageListener (Java SE)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

16. Receiving messages asynchronously
with a message-driven bean (Java EE)
@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName = "destinationLookup", propertyValue = "jms/messageQueue")
})
public class MyMessageListener implements MessageListener {

 public void onMessage(Message message) {
 TextMessage textMessage = (TextMessage)message;
 try {
 String text = textMessage.getText();
 System.out.println("Received: "+text);
 } catch (JMSException e) {
 e.printStackTrace();
 }
}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

17. Obey the threading restrictions

• ConnectionFactory, Queue, Topic (and Connection) support concurrent use

• JMSContext (and Session), combined with any producer/consumer objects
associated with it, and any received messages, may be used by only one
thread at a time

– E.g. must not create two JMSProducer objects from the same JMSContext and have
two concurrent threads using them to send messages at the same time.

– Setting a MessageListener means the JMSContext is being used by the message
delivery thread. No other thread may then use the JMSContext - other than to call
setMessageListener again or to call close.

• If you want to use multiple threads, use multiple JMSContexts (or Sessions)

Or risk unpredictable behaviour

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JMS Best Practices

Is JMS the best messaging API for your application?

Use the best JMS API

Use the right JMS features

Use JMS in the easiest way

Get the most out of JMS: advanced features

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

18: What is a JMS destination?

• JMS destinations are abstractions that mean senders and receivers don't
need to know about each other

• Messages are sent to a named destination, not to a particular receiver

• Messages are received from a named destination, not from a particular
sender

• Two types of JMS destination:

– Queue

– Topic

• What is the difference?

Sender Receiver

Destination

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

19. When to use a Queue
When you want each message to go to one of the receivers listening to the queue

Sender

Sender

Receiver

Receiver

Receiver

OrderQueue

6 5 4 3

1

2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

20. When to use a Topic
When you want message to go to all the receivers listening to the topic

Sender

Sender

Receiver

Receiver

Receiver

Topic

6 5 4 3

1

2

1

1

2

2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Topic

21. Understanding topics
Messages are held in subscriptions

Sender

Sender

Receiver

Receiver

Receiver

7

Subscription

6 5 4 3 2 1

Subscription

6 5 4 3 2 1

Subscription

6 5 4 3 2 1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

22. Durable topic subscriptions

• A durable subscription continues to exist even after consumer closes
// create a durable subscription on a topic
JMSConsumer consumer = context.createDurableConsumer(topic,"mySubscription");

// disconnect from the durable subscription, which continues to exist
consumer.close();

• A durable subscription remains in existence even after the consumer has
closed. New messages will still be added to the durable subscription.

• If your application shuts down and is restarted later, you can catch all the
messages sent to the topic whilst you were away

• You need to provide a name when you first create a durable subscription

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

23. Durable topic subscriptions
with a message-driven bean (Java EE)
@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName = "destinationType", propertyValue = "javax.jms.Topic"),
 @ActivationConfigProperty(
 propertyName = "destinationLookup", propertyValue = "jms/myTopic"),
 @ActivationConfigProperty(
 propertyName = "subscriptionDurability", propertyValue = "Durable"),
 @ActivationConfigProperty(
 propertyName = " subscriptionName", propertyValue = "mySubscription")
})
public class MyMessageListener implements MessageListener {

 public void onMessage(Message message) {
 ...
 }
}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

24. Non-durable topic subscriptions

• A non-durable subscription exists only as long as the consumer exists
// create a non-durable subscription
JMSConsumer consumer = context.createConsumer(topic);
consumer.setMessageListener(messageListener);

// receive messages from topic

...

// destroy the non-durable subscription
consumer.close();

• So if your application shuts down and is restarted later, you'll miss all the
messages sent to the topic whilst you were away

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

25. Non-durable topic subscriptions
with a message-driven bean (Java EE)
@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName = "destinationType", propertyValue = "javax.jms.Topic"),
 @ActivationConfigProperty(
 propertyName = "destinationLookup", propertyValue = "jms/myTopic"),
 @ActivationConfigProperty(
 propertyName = "subscriptionDurability", propertyValue = "NonDurable")
})
public class MyMessageListener implements MessageListener {

 public void onMessage(Message message) {
 ...
 }
}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

26. Persistent or non-persistent messages?

• Messages are persistent by default

• Persistent messages sent to a queue will be saved on disk so that it won't
be lost if the server is restarted
context.createProducer().send(messageQueue,message);

• Messages may be optionally configured to be non-persistent

– usually much faster

– message will be lost if the server is restarted

– or if the server becomes short of memory or other resource limits are reached

context.createProducer().
 setDeliveryMode(DeliveryMode.NON_PERSISTENT).send(messageQueue,message);

Queues

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• For each durable subscription

– Persistent messages are persisted

– Non-persistent messages not persisted
(and may also be thrown away if
consumer disconnects)

• For each non-durable subscription
on the topic

– Messages are not persisted (even
messages sent as "persistent").

Persistent
message

Non-persistent
message

Durable
subscription

Message is
persisted

Message is
not persisted

Non-durable
subscription

Message is
not persisted

Message is
not persisted

27. Persistent or non-persistent messages?
Topics

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

28. Persistent or non-persistent messages?

// send a non-persistent message using the simplified API
context.createProducer().setDeliveryMode(NON_PERSISTENT).send(messageQueue,message);

// Warning: this does not do what you might expect!
message.setJMSDeliveryMode(NON_PERSISTENT)
context.createProducer().send(messageQueue,message);

Gotcha

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

// TextMessage
// Contains a single string (e.g. XML)
String stockData = ...
TextMessage message = context.createTextMessage();
message.setText(stockData);

// BytesMessage
// Contains any bytes
byte[] stockData;
BytesMessage message = context.createBytesMessage();
message.writeBytes(stockData);

// ObjectMessage
// Contains a single object that implements java.io.Serializable
ObjectMessage message = context.createObjectMessage();
message.setObject(stockObject);

// Message
// Contains no body (only headers and properties)
Message message = context.createMessage();

29. Which message type to use
Four principal message types

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

// StreamMessage
// Contents must be written and read in order
StreamMessage message = context.createStreamMessage();
message.writeString(stockName); // name of stock
message.writeDouble(stockValue); // current value of stock
message.writeLong(stockTime); // time stock info was updated
message.writeDouble(stockDiff); // price change
message.writeString(stockInfo); // info on this stock

// MapMessage
// Contents may be written and read in any order
MapMessage message = context.createMapMessage();
message.setString("Name", "ORCL");
message.setDouble("Value", stockValue);
message.setLong("Time", stockTime);
message.setDouble("Diff", stockDiff);
message.setString("Info", "Recent server announcement causes market interest");

30. Which message type to use
Two more esoteric message types

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

31. Message acknowledgement

• After you've received a message, the server needs to know you've got it

• If the message is not acknowledged, the server will think that something
went wrong and will send it again later

• JMS offers several ways of acknowledging messages

• Type of acknowledgement required is specified by calling
createContext(sessionMode)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

32. Automatic acknowledgement

• AUTO_ACKNOWLEDGE - a good choice if you aren't using a transaction

– message is acknowledged before receive returns a message to the application

– and after the application returns from onMessage

JMSContext context2 = connectionFactory.createContext(AUTO_ACKNOWLEDGE);
JMSContext context1 = connectionFactory.createContext(); // uses AUTO_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE - potentially the fastest mode
– acknowledgement is automatic but may be deferred

– may get duplicate messages if your application fails and is restarted

JMSContext context3 = connectionFactory.createContext(DUPS_OK_ACKNOWLEDGE);

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

33. Client acknowledgement

• Gives you control over acknowledgement without using a transaction

– allows you to defer acknowledgement to improve performance

– may get duplicate messages if your application fails and is restarted

• Specify client-acknowledgement when you create the JMSContext
JMSContext context2 = connectionFactory.createContext(CLIENT_ACKNOWLEDGE);

• Call acknowledge() to acknowledge all received messages
// acknowledge this message (and any other messages received from the same JMSContext)
message.acknowledge()

• Use in Java SE applications

• Avoid in Java EE applications - use global (XA) transactions instead

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

34. Local transactions
JMSContext context = connectionFactory.createContext(SESSION_TRANSACTED);

// now receive a message (could also use a listener)
JMSConsumer consumer = context.createConsumer(someQueue);
Message message = consumer.receive(timeout);

// we can process the received message,
// but message is not acknowledged until the transaction is committed

// now send a message
context.createProducer().send(messageQueue,message);

// message is not actually sent until the transaction is committed

context.commit();

• Use in Java SE applications

• Avoid in Java EE applications - use global (XA) transactions instead

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

35. Global (XA) transactions

• Java EE only

• Allow multiple transactional resources to be committed in the same
transaction

• Receive a message and update a database in the same transaction

• Java EE supports two types of transaction management

– Container-managed transactions

– Bean-managed transactions

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

// EJBs use container-managed transactions by default
@Stateless
public class MyCMTBean {

@Inject @JMSConnectionFactory("jms.MyXACF1") JMSContext context;
@Resource(lookup = "TestQueue") Queue queue;

public String myMethod() throws Exception {

context.createProducer().send(queue, "Some text");
} // transaction is committed automatically

}

36. Global (XA) transactions (Java EE)
Container-managed transactions with EJBs

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

@WebServlet(name="myServlet", urlPatterns={"/myservlet"})
public class MyServlet extends HttpServlet {

@Inject @JMSConnectionFactory("jms.MyXACF1") JMSContext context;
@Resource(lookup = "TestQueue") Queue queue;

@Transactional
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
String text = request.getParameter("text");
context.createProducer().send(queue, text);

} // transaction is committed automatically
}

37. Global (XA) transactions (Java EE)
Container-managed transactions with servlets and CDI managed beans

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

@WebServlet(name="myServlet", urlPatterns={"/myservlet"})
public class MyServlet extends HttpServlet {

@Inject @JMSConnectionFactory("jms.MyXACF1") JMSContext context;
@Resource(lookup = "TestQueue") Queue queue;
@Resource UserTransaction ut;

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
String text = request.getParameter("text");
ut.begin();
context.createProducer().send(queue, text);
ut.commit();

}
}

38. Global (XA) transactions (Java EE)
Managing the transaction yourself

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

39. Message properties

• Properties can be boolean, byte, short, int, long, float, double, and String.
setBooleanProperty, setByteProperty, setShortProperty,setLongProperty,
setFloatProperty, setDoubleProperty, setStringProperty

• Set a property directly on the message object
textMessage.setStringProperty("StockSector","Tech");
context.createProducer().send(topic,textMessage)

• or on the JMSProducer object prior to sending
context.createProducer().
 setStringProperty("StockSector","Tech").send(topic,textMessage);

Adding filterable metadata to your messages

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

40. Message selectors
When you don't want every message

• Sender sets properties on the
message

// create stock info message
String info = ...
TextMessage tm = context.createTextMessage();
tm.setText(info);

// set property to identify stock sector
tm.setStringProperty("StockSector","Tech");

// sent the message
context.send(topic,stockData);

• Consumer uses message selector to
receive only messages with certain
message property values

String selector = "(StockSector='Tech')");
JMSConsumer consumer =
 context.createConsumer(topic,selector);
consumer.setMessageListener(listener);

• Message selector expressions can
filter on property values and on
message headers (e.g. JMSPriority)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JMS Best Practices

Is JMS the best messaging API for your application?

Use the best JMS API

Use the right JMS features

Use JMS in the easiest way

Get the most out of JMS: advanced features

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

41. Shortcuts for sending messages

// send a TextMessage
context.createProducer().send(queue,"hello");

// send a MapMessage
Map mapData =;
context.createProducer().send(queue,mapData);

// send an ObjectMessage
Serializable object =;
context.createProducer().send(queue,object);

// send a BytesMessage
byte[] bytes =;
context.createProducer().setStringProperty("foo","bar").send(queue,bytes);

Send the message body directly

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

42. Using the JMSProducer to configure send parameters

• JMSProducer is a lightweight object used to hold "send configurations"

• Use setter methods to configure

– persistent/non-persistent (delivery mode), time to live, delivery delay

– message headers (alternative to setting on message)

– message properties (alternative to setting on message)

• Setter methods all return the JMSProducer object.

– allows method calls to be chained together

context.createProducer().setProperty("foo","bar").
 setTimeToLive(10000).setDeliveryMode(NON_PERSISTENT).send(dataQueue, body);

Use the builder pattern

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

43. Java EE 7 queue and topic definitions
Non-portable resource definitions for rapid prototyping and development

• Create a queue or topic in JNDI

• Either using annotations in your
code
@JMSDestinationDefinition(
 interfaceName = "javax.jms.Queue",
 name = "java:global/MyTestQueue",
 destinationName ="MyQueue")

• Use @JMSDestinationDefinitions
to wrap multiple
@JMSDestinationDefinitions

elements

• Or using XML in your deployment
descriptor
<jms-destination>
 <interface-name>
 javax.jms.Queue
 </interface-name>
 <name>
 java:global/MyTestQueue
 </name>
 <destination-name>
 MyQueue
 </destination-name>
</jms-destination>

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

44. Java EE 7 connection factory definitions
Non-portable resource definitions for rapid prototyping and development

• Create a JMS connection factory in
JNDI using annotations in your code

@JMSConnectionfactoryDefinition(
 name = "java:global/MyTestCF",
 properties = {
 "addressList=mq://localhost:7676"
 })

• Use @JMSConnectionFactoryDefinitions
to wrap multiple
@JMSConnectionFactoryDefinition

elements

• Create a JMS connection factory in
JNDI using XML in your deployment
descriptor

<jms-connection-factory>
 <name>
 java:global/MyTestCF
 </name>
 <property>
 <name>addressList</name>
 <value>mq://localhost:7676</value>
 </property>
</jms-connection-factory>

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JMS Best Practices

Is JMS the best messaging API for your application?

Use the best JMS API

Use the right JMS features

Use JMS in the easiest way

Get the most out of JMS: advanced features

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

45. Message redelivery

• Messages that are delivered but not acknowledged (e.g. if a message
listener throws an exception) will be delivered again

• Exactly when a message is redelivered depends on the type of
acknowledgment being used

• When a message is redelivered,

– message.getJMSRedelivered() will return true

– message.getIntProperty("JMSXDeliveryCount") will return how many times message has
been redelivered

• Design your code to detect messages being redelivered repeatedly

In the real world, something things go wrong

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

46. Temporary queues and topics

• You can create a temporary queue or topic on-the-fly in your code
 Queue tempQueue = context.createTemporaryQueue();
Topic tempTopic = context.createTemporaryTopic();

• Anyone can send to a temporary queue or topic

• Only the JMSContext (Connection) that created it can receive messages

– so temporary queues are more useful than temporary topics

• When the connection that created it is closed, the temporary queue or
topic is automatically destroyed

• Use for request-reply messaging

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

47a. Request-reply messaging
The main reason for using temporary queues

Requestor
1 Request queue

Requestor
2

Temporary reply queue for Requestor 1

Temporary reply queue for Requestor 2

Responder
A

Responder
B

Request

Reply

Request

Reply

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

• Requestor:

– creates temporary queue using
context.createTemporaryQueue()

– creates request message and saves
name of temporary queue in it
using message.setJMSReplyTo(queue)

– sends message to request queue
(which is a normal permanent queue)

– waits for a reply message from the
temporary reply queue

– Reuse the temporary queue, and the
consumer on it, for subsequent
requests (optional)

• Responder:

– receives request message from request
queue

– calls message.getJMSReplyTo() to obtain
temporary reply queue

– creates reply message

– sends reply message to temporary
reply queue

47b. Request-reply messaging

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

48. Understanding message order

• Messages are delivered in the same order in which they are sent

– for the same sending JMSContext (Session), receiving JMSContext , and queue/topic

– no requirement to preserve relative order of messages sent by different JMSContext s

• Exceptions

– High priority messages can overtake lower priority messages

– Non-persistent messages may overtake persistent messages

– Setting delivery delay may mean messages are delivered in a different order

6 5 4 3

1

2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

49. Message priority

• A message can be given an integer priority value in the range 0-9

– 0 is lowest priority, 4 is default priority, 9 is highest priority

• JMS provider should "do its best" to deliver higher priority messages before
lower priority messages - but don't rely on it

• Set message priority on the JMSProducer prior to calling send
 context.createProducer().setPriority(5).send(destination,message);

• Don't try to set the priority directly on the message
// This does not do what you might expect
message.setJMSPriority(5);
context.createProducer().send(destination,message)

When some messages are more urgent than others

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

50. Message delivery delay

• Set delivery delay on the JMSProducer prior to calling send

 long delay = 12*60*60*1000; // 12 hours in milliseconds
context.createProducer().setDeliveryDelay(delay).send(destination,message);

• Message will be added to queue or topic immediately

• Message will not be delivered to a consumer until at least 12 hours after
time it was sent

When you want your message to be delivered later

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Topics we didn't mention

• Shared subscriptions

• Async send

• Exception handling

• Message expiration

• Security

• Using a QueueBrowser to browse queues (sorry, can't browse topics)

• JMSConsumer#receiveBody

• Message#getBody

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Any questions?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Shortcuts for receiving messages

// next message is a TextMessage
String text = consumer.receiveBody(String.class);

// next message is a MapMessage, and we want to specify a receive timeout
Map map = consumer.receiveBody(Map.class, 1000);

// next message is an ObjectMessage which holds a MyObject
MyObject object = consumer.receiveBody(MyObject.class);

// next message is a BytesMessage
byte[] bytes = consumer.receiveBody(byte[].class);

Only useful if you know the expected message type, and you don't need to
access message properties or headers

Receive the message body directly

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Shared subscriptions

• Topic subscriptions are normally unshared

– You can have only one consumer for each subscription

– Means only one thread can process messages

• Topic subscriptions may alternatively be shared
// create multiple consumers on the same shared non-durable subscription
JMSConsumer consumer1 = context1.createSharedConsumer(topic,sharedSubName)
JMSConsumer consumer2 = context2.createSharedConsumer(topic,sharedSubName)

// create multiple consumers on the same shared durable subscription
JMSConsumer consumer3 = context3.createSharedDurableConsumer(topic,sharedSubName)
JMSConsumer consumer4 = context4.createSharedDurableConsumer(topic,sharedSubName)

• Advanced feature for Java SE allowing higher scalability and throughput

• In Java EE, MDBs already provide a way to do this

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

51. Message expiration

• Set timeToLive on the JMSProducer before calling send
// stock data message will expire after 500ms
context.createProducer().setTimeToLive(500).send(topic,stockData);

• Message will be added to queue or topic immediately

• Message will not be delivered to consumers after time to live has expired

• Useful for time-sensitive data such as stock prices

When your message soon becomes worthless

