ORACLE

;eiz JavaOne

ORACLE

Client Orchestration and Reactive CREATE
Programming in JAX-RS Applications [HE

FUTURE

Michal Gajdos
Software Developer, Oracle

September, 2014

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

£, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4

Program Agenda

B» The Problem
E» The Why
B The How

E» Beyond

S, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Problem

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

The Problem

Description

* Robust, Non-Uniform infrastructure of Services
— Use different technologies — EJB, JMS, WS

— Custom interfaces and data formats
* Return data tailored for communicating inside the internal infrastructure

— Not all are accessible from outside of the internal network

* WebApp that allows customers to communicate
— Has access to the internal network, can communicate with desired services

* Goal: Expand to other platforms

— ORACLE

£, JavaOne

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Problem

Example Application: Travel Agency

* 3 separate services inside the internal network
— List visited destinations and recommend new places to visit
— Obtain weather forecast for a destination
— Obtain price calculation for a destination

* Data formats: JSON, XML

* Create an orchestration layer for an (mobile) application
— list visited places and recommend new places for a user

£, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Why

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

The Why

Building an Orchestration Layer

* Client specific API

— Different needs for various devices: screen size, payment methods, ...
* Single Entry Point

— No need to communicate with multiple services

* Thinner client

— No need to consume different formats of data

* Less frequent client updates

— Doesn’t matter if one service is removed in favor of another service

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

10

The Why

Building an Orchestration Layer

* Flexible “Layer App” updates

* “Similar” user experience
— Even for the older devices

* Security

— No need to expose all services

S, JavaOner

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

11

The How

JAX-RS 2.0 and Jersey 2

S, JavaOne

— ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

12

JAX-RS Resources and Resource methods — Synchronous

@Path("agent/sync")
@Produces("application/json™")
public class SyncAgentResource {

@Uri("remote/destination")
private WebTarget destination;

@Uri("remote/calculation/from/{from}/to/{to}")
private WebTarget calculation;

@Uri("remote/forecast/{destination}")
private WebTarget forecast;

@GET

public AgentResponse sync() {
/] ...
¥

¥

'—({) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

13

JAX-RS Resources and Resource methods — Asynchronous

@Path("agent/completion")
@Produces("application/json™")
public class CompletionStageAgentResource {

@Uri("remote/destination")
private WebTarget destination;

@Uri("remote/calculation/from/{from}/to/{to}")
private WebTarget calculation;

@Uri("remote/forecast/{destination}")
private WebTarget forecast;

@GET
public void completion(@Suspended final AsyncResponse async) {

/] ...
}

¥

'—({) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

14

JAX-RS Application

@ApplicationPath("/rx")
public class RxApplication extends javax.ws.rs.core.Application {

@Override

public Set<Class<?>> getClasses() {
final Set<Class<?>> classes = new HashSet<>();
classes.add(SyncAgentResource.class);

/] ...

return classes;

}

@Override
public Set<Object> getSingletons() { ... }

@Override
public Map<String, Object> getProperties() { ... }

'—(f) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

15

Jersey Application

@ApplicationPath("/rx")
public class RxApplication extends ResourceConfig {

public RxApplication() {
// Agent Resources.

packages("org.glassfish.jersey.examples.rx.agent");

// Providers.
register(JacksonFeature.class);
register(ObjectMapperContextResolver.class);

'—(f) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

16

RxApplication

Exposed resources

* HTTP GET — rx/agent/sync
— Response — application/json content type

* HTTP GET — rx/agent/completion

— Response — application/json content type

— lava O n e Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
=—d

— ORACLE

17

JAX-RS 2.0 Client — Synchronous

Client client =
WebTarget rx =
WebTarget forec

Forecast foreca

S, JavaOner

ClientBuilder.newClient();
client.target("http://example.com/rx").register(JacksonFeature.class);
asts = rx.path("remote/forecast/{destination}");
st = forecasts.resolveTemplate("destination", dest.getDestination())

.request("application/json")
.get(Forecast.class);

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

18

JAX-RS 2.0 Client — Asynchronous

Future<Forecast> forecast = forecasts.resolveTemplate("destination", d.getDestination())
.request()

.async()
.get(new InvocationCallback<Forecast>() {

@Override

public void completed(Forecast forecast) {
// Do Something.
}

@Override

public void failed(Throwable throwable) {
// Do Something else.
}

})s

while (!forecast.isDone()) {
// Do Something.
}

System.out.println(forecast.get());

'—({) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved 19
L ORACLE A ’ ’ & ’

Jersey 2

* JAX-RS 2.0 Reference Implementation

* Glassfish 4, WebLogic 12.1.3 (Jersey 1.18.1, Jersey 2.5.1), Standalone

* Other JAX-RS 2.0 implementations
— RESTEasy — JBoss, WildFly
— CXF

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

20

Orchestration Layer with JAX-RS

Example: Travel Agency

* REST API exposed using JAX-RS Resources and Resource Methods (Agent)

— serving visited and recommended destinations
* Including weather forecasts and price calculations for recommended places

—JSON

* JAX-RS Clients obtaining all relevant data
—Sync, Async, Rx
— Combine the retrieved data to create a response

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

21

DEMO

S, JavaOner

ORACLE"

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

22

Client - Synchronous Approach

* Easy to read, understand and debug
— Simple requests
— Composed requests

* Slow
— Sequential processing even for independent requests

* Wasting resources
— Waiting threads

S, JavaOne

— ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

23

DEMO

S, JavaOner

ORACLE"

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

24

Client — Asynchronous Approach
Futures

* Return immediately after submitting a request
— Future

* Harder to understand, debug
— Especially when dealing with multiple futures

* Fast
— Each request can run on a separate thread
— Need to actively check for completion event (future.isDone()) or block (slow)

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

25

Client — Asynchronous Approach
The Callback Hell

* “Don’t call us, we’ll call you”

* Harder to read, understand and debug
— Especially for composed calls (dependent)

* Need to find out when all Async requests finished
— Relevant only for 2 or more requests (CountDownlLatch)

* Fast
— Each request can run on a separate thread

£, JavaOner

ORACLE"

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

26

DEMO

S, JavaOner

ORACLE"

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

27

Beyond The Callback Hell

Rx JAX-RS Client

Client — Reactive Approach

* Data-Flows
— Execution model propagates changes through the flow

* Asynchronous
— Preferably, Speed

* Event-based
— Notify user code or another item in flow about continuation, error, completion

* Composable
— Compose/Transform multiple flows into the resulting one

'—({) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

29

Client — Reactive Approach

Libraries

* RxJava — Observable
* Java 8 — CompletionStage and CompletableFuture
* JSR166e — CompletableFuture (Java SE6, Java SE7)

° Guava — ListenableFuture and Futures

S, JavaOne

— ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserve

d.

30

An Observable<Response> Example

Observable<Response> response = // ...
List<String> visited = new ArraylList<>(5);

// Read a list of destinations from JAX-RS response.

response.map(resp -> resp.readEntity(new GenericType<List<Destination>>() {}))
// If an exception is thrown, continue with an empty list.
.onErrorReturn(throwable -> Collections.emptyList())

// Emit list of destinations one-by-one (as a new Observable).
.flatMap(Observable: : from)

// Take the next 5 destinations.

.take(5)

// Obtain a string representation of a destination.
.map(Destination: :getDestination)

// Observe on a separate thread.
.observeOn(Schedulers.i0())

// Subscribe to callbacks - OnNext, OnError, OnComplete.
.subscribe(visited::add, async::resume, () -> async.resume(visited));

'—({) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

31

Jersey Rx Client
Extension of JAX-RS Client

* Remember #request() and #request().async() ?
—request() returns Invocation.Builder; Syncinvoker — sync HTTP methods
—request().async() returns Asynclinvoker — async HTTP methods

 #rx() and #rx(ExecutorService)
— Return an extension of Rxlnvoker

* Why an extension?

£, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

32

Synclnvoker and Asynclnvoker

public interface SyncInvoker {
Response get();
<T> T get(Class<T> responseType);
<T> T get(GenericType<T> responseType);

/] ...
}

public interface AsyncInvoker {
Future<Response> get();
<T> Future<T> get(Class<T> responseType);
<T> Future<T> get(GenericType<T> responseType);

/] ...

S, JavaOner

— = eAce Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 33

RxInvoker and an extension Example

@Beta public interface RxInvoker<T> {
T get();
<R> T get(Class<R> responseType);

<R> T get(GenericType<R> responseType);

/] ...
}

@Beta public interface RxObservableInvoker extends RxInvoker<Observable> {
Observable<Response> get();
<T> Observable<T> get(Class<T> responseType);

<T> Observable<T> get(GenericType<T> responseType);

/] ...

¥

<§Java0ne . o
— == Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
— ORACLE!

34

Jersey Rx Client — contd
Extension of JAX-RS Client

* Affected JAX-RS interfaces
— RxClient<RX extends RxInvoker> extends Client
— RxWebTarget<RX extends RxInvoker> extends WebTarget
— RxInvocationBuilder<RX extends RxInvoker> extends Invocation.Builder

* Rx class
— RxObservable
— RxCompletionStage
— RxListenableFuture
— RxCompletableFuture (JSR 166¢)

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

35

How to create Jersey Rx Client
Rx — Static Helper Methods returning RxClient<RX extends Rxinvoker>

* newClient(Class<RX> invokerType)

* newClient(Class<RX> invokerType, ExecutorService executor)

* from(Client client, Class<RX> invokerType)

* from(Client client, Class<RX> invokerType, ExecutorService executor)
* from(WebTarget target, Class<RX> invokerType)

* from(WebTarget target, Class<RX> invokerType, ExecutorService executor)

— lava O n e Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
=—d

— ORACLE

36

How to create Jersey Rx Client
RxObservable — Static Helper Methods returning RxClient<RxObservablelnvoker>

* newClient()

* newClient(ExecutorService executor)

* from(Client client)

* from(Client client, ExecutorService executor)
* from(WebTarget target)

* from(WebTarget target, ExecutorService executor)

— lava O n e Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
=—d

— ORACLE

37

DEMO

S, JavaOner

ORACLE"

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

38

Resources
JAX-RS and Jersey

* JAX-RS Client API

— https://jax-rs-spec.java.net/nonav/2.0/apidocs/overview-summary.html

— https://jersey.java.net/documentation/latest/client.html

* Jersey Rx Client
— https://github.com/jersey/jersey/tree/master/incubator/rx/rx-client

— https://github.com/jersey/jersey/tree/master/incubator/rx/rx-client-guava

— https://github.com/jersey/jersey/tree/master/incubator/rx/rx-client-java8

— https://github.com/jersey/jersey/tree/master/incubator/rx/rx-client-jsr166e

— https://github.com/jersey/jersey/tree/master/incubator/rx/rx-client-rxjava

£, JavaOner

ORACLE Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

39

Resources
Example and Libraries

* 3" party libraries
— https://code.google.com/p/guava-libraries/
— https://github.com/ReactiveX/RxJava

— http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-
summary.html

— http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

* Example (JDK7)
— https://github.com/jersey/jersey/tree/master/examples/rx-client-webapp

— I ava O n e Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

— ORACLE

40

Related Talks

* New and Noteworthy in Jersey 2 [CON3782]
—Wednesday, Oct 1, 11:30 AM - 12:30 PM - Parc 55 - Mission

S, JavaOne

— ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

41

Questions & Answers

S, JavaOne

— ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

42

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

£, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 43

Hardware and Software
Engineered to Work Together

;eiz JavaOne

ORACLE

ORACLE

