
The OWASP Foundation
http://www.owasp.org

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the OWASP License.

Security Testing for
Developers using

OWASP ZAP
Simon Bennetts

OWASP ZAP Project Lead

Mozilla Security Team

psiinon@gmail.com

JavaOne
San Fransisco 2014

2

Overview

• Why you should be using ZAP

• Introduction to ZAP

• ZAP Use cases

• ZAP API

• ZAP Scripting

• Wrap up

3

My questions for you :)

• Who's heard of OWASP?

• Who's heard of ZAP?

• Who's used ZAP?

• Who does any security testing in
development?

• Who thinks they do enough security
testing in development?

4

“You cannot build secure web applications
unless you know how they will be attacked”

Thanks to Royston Robertson www.roystonrobertson.co.uk for permission to use his cartoon!

http://www.roystonrobertson.co.uk/

5

The problems

• Most devs know little about security

• Most companies have too few appsec
folk

• External appsec people cost $$$

• Security testing is done late in the
development lifecycle (if at all)

6

Part of the Solution

• Use a security tool like ZAP in
development :)

• In addition to a security training, secure
development lifecycle, threat modeling,
static source code analysis, core reviews,
professional pentesting...

7

What is ZAP?
• An easy to use webapp pentest tool

• Completely free and open source

• Ideal for beginners

• But also used by professionals

• Ideal for devs, esp. for automated security tests

• Becoming a framework for advanced testing

• Included in all major security distributions

• ToolsWatch.org Top Security Tool of 2013

• Not a silver bullet!

8

ZAP Principles
• Free, Open source

• Involvement actively encouraged

• Cross platform

• Easy to use

• Easy to install

• Internationalized

• Fully documented

• Work well with other tools

• Reuse well regarded components

9

Statistics
• Released September 2010, fork of Paros

• V 2.3.1 released in May 2014

• V 2.3.1 downloaded > 70K times

• Translated into 20+ languages

• Over 100 translators

• Mostly used by Professional Pentesters?

• Paros code: ~20% ZAP Code: ~80%

10

Ohloh Statistics
• Very High Activity

• The most active OWASP Project

• 27 active contributors

• 329 years of effort

Source: http://www.ohloh.net/p/zaproxy

Typical ZAP use

1. Explore your application

2. Configure ZAP for your application

3. Passive scanning runs automatically

4. Run active scanner

5. Fine tuning?

6. Perform manual testing?

11

What to configure?
• Pages to ignore (logout, duplicates)

• Anti CSRF tokens

• Session handling

• Authentication

• Users

• Structure (single page apps)

• 'Non standard' separators
e.g. aaa:bbb;ccc:ddd

12

Some ZAP use cases

• Point and shoot – the Quick Start tab

• Proxying via ZAP, and then scanning

• Manual pentesting

• Automated security regression tests

• Debugging

• Part of a larger security program

13

Quick Start Attack

14

Proxying via ZAP

15

Options:

• Plug-n-Hack

• Configure your browser's proxy manually

Right click everywhere!

Fine tuning

More fine tuning

19

 Regression Tests

http://code.google.com/p/zaproxy/wiki/SecRegTests

Security

ZAP – Embedded
• ThreadFix – Denim Group

Software vulnerability aggregation and
management system

20

• Minion – Mozilla
Security automation platform

The ZAP API

The ZAP API
• Direct access via:

– http://zap/ (if proxying through ZAP)

– http://<ip address>:<port>

• API Clients:

– Java

– Python

– Node.js

– PHP

• https://code.google.com/p/zaproxy/wiki/ApiDetails

http://zap/

Scripting
• Full access to ZAP internals

• Support all JSR 223 languages, inc

– JavaScript

– Jython

– JRuby

– Zest :)

Scripting
• Different types of scripts

– Stand alone Run when you say

– Targeted Specify URLs to run against

– Active Run in Active scanner

– Passive Run in Passive scanner

– Proxy Run 'inline'

– Authentication Complex logins

– Input Vector Define what to attack

Zest - Overview
• An experimental scripting language

• Developed by Mozilla Security Team

• Free and open source (of course)

• Format: JSON – designed to be
represented visually in security tools

• Tool independent – can be used in open
and closed, free or commercial software

• Essentially ZAP's macro language

• Supports all ZAP default script types

Zest Scripts

The Source Code
• Currently on Google Code

• Will probably move to GitHub when time
allows

• Hacking ZAP blog series:
https://code.google.com/p/zaproxy/wiki/Development

• ZAP Internals:
https://code.google.com/p/zaproxy/wiki/InternalDetails

• ZAP Dev Group:
http://groups.google.com/group/zaproxy-develop

https://code.google.com/p/zaproxy/wiki/Development
https://code.google.com/p/zaproxy/wiki/InternalDetails
http://groups.google.com/group/zaproxy-develop

Conclusion

• You need to consider security in all stages
of development

• ZAP is an ideal tool for automating security
tests

• Its also a great way to learn about security

• Its a community based tool – get involved!

Questions?
http://www.owasp.org/index.php/ZAP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

