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Overview

• Why you should be using ZAP

• Introduction to ZAP

• ZAP Use cases

• ZAP API

• ZAP Scripting

• Wrap up
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My questions for you :)

• Who's heard of OWASP?

• Who's heard of ZAP?

• Who's used ZAP?

• Who does any security testing in 
development?

• Who thinks they do enough security 
testing in development?



4

“You cannot build secure web applications 
unless you know how they will be attacked”

Thanks to Royston Robertson www.roystonrobertson.co.uk for permission to use his cartoon!

http://www.roystonrobertson.co.uk/
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The problems

• Most devs know little about security

• Most companies have too few appsec 
folk

• External appsec people cost $$$

• Security testing is done late in the 
development lifecycle (if at all)
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Part of the Solution

• Use a security tool like ZAP in 
development :)

• In addition to a security training, secure 
development lifecycle, threat modeling, 
static source code analysis, core reviews, 
professional pentesting...
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What is ZAP?
• An easy to use webapp pentest tool

• Completely free and open source

• Ideal for beginners

• But also used by professionals

• Ideal for devs, esp. for automated security tests

• Becoming a framework for advanced testing

• Included in all major security distributions

• ToolsWatch.org Top Security Tool of 2013

• Not a silver bullet!
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ZAP Principles
• Free, Open source

• Involvement actively encouraged

• Cross platform

• Easy to use

• Easy to install

• Internationalized

• Fully documented

• Work well with other tools

• Reuse well regarded components
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Statistics
• Released September 2010, fork of Paros

• V 2.3.1 released in May 2014

• V 2.3.1 downloaded > 70K times

• Translated into 20+ languages

• Over 100 translators

• Mostly used by Professional Pentesters?

• Paros code: ~20%  ZAP Code: ~80%
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Ohloh Statistics
•      Very High Activity

• The most active OWASP Project

• 27 active contributors

• 329 years of effort

Source: http://www.ohloh.net/p/zaproxy



Typical ZAP use

1. Explore your application

2. Configure ZAP for your application

3. Passive scanning runs automatically

4. Run active scanner

5. Fine tuning?

6. Perform manual testing?
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What to configure?
• Pages to ignore (logout, duplicates)

• Anti CSRF tokens

• Session handling

• Authentication

• Users

• Structure (single page apps)

• 'Non standard' separators
e.g. aaa:bbb;ccc:ddd
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Some ZAP use cases

• Point and shoot – the Quick Start tab

• Proxying via ZAP, and then scanning

• Manual pentesting

• Automated security regression tests

• Debugging

• Part of a larger security program
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Quick Start Attack
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Proxying via ZAP
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Options:

• Plug-n-Hack

• Configure your browser's proxy manually



Right click everywhere!



Fine tuning



More fine tuning
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              Regression Tests

http://code.google.com/p/zaproxy/wiki/SecRegTests

Security



ZAP – Embedded
• ThreadFix – Denim Group

Software vulnerability aggregation and 
management system
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• Minion – Mozilla
Security automation platform



The ZAP API



The ZAP API
• Direct access via:

– http://zap/               (if proxying through ZAP)

– http://<ip address>:<port> 

• API Clients:

– Java

– Python

– Node.js

– PHP

• https://code.google.com/p/zaproxy/wiki/ApiDetails

http://zap/


Scripting
• Full access to ZAP internals

• Support all JSR 223 languages, inc

– JavaScript

– Jython

– JRuby

– Zest :)



Scripting
• Different types of scripts

– Stand alone Run when you say

– Targeted Specify URLs to run against

– Active Run in Active scanner

– Passive Run in Passive scanner

– Proxy Run 'inline'

– Authentication Complex logins

– Input Vector Define what to attack



Zest - Overview
• An experimental scripting language

• Developed by Mozilla Security Team

• Free and open source (of course)

• Format: JSON – designed to be 
represented visually in security tools

• Tool independent – can be used in open 
and closed, free or commercial software

• Essentially ZAP's macro language

• Supports all ZAP default script types



Zest Scripts



The Source Code
• Currently on Google Code

• Will probably move to GitHub when time 
allows

• Hacking ZAP blog series: 
https://code.google.com/p/zaproxy/wiki/Development

• ZAP Internals: 
https://code.google.com/p/zaproxy/wiki/InternalDetails

• ZAP Dev Group: 
http://groups.google.com/group/zaproxy-develop

https://code.google.com/p/zaproxy/wiki/Development
https://code.google.com/p/zaproxy/wiki/InternalDetails
http://groups.google.com/group/zaproxy-develop


Conclusion

• You need to consider security in all stages 
of development

• ZAP is an ideal tool for automating security 
tests

• Its also a great way to learn about security

• Its a community based tool – get involved!



Questions?
http://www.owasp.org/index.php/ZAP
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