
Copyright © 2014, Oracle and/or its afliates. All rights reserved. |

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Alexandre (Shura) Iline
JDK Test Architect
JDK SQE team
Oct 1, 2014

Java Code Coverage
with JCov
Implementaton Details and Use Cases

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 3

Dmitry Fazunenko

JCov development

Alexey Fedorchenko

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product directon. It is intended for
informaton purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functonality, and should not be relied upon
in making purchasing decisions. The development, release, and tming of any features or
functonality described for Oracle’s products remains at the sole discreton of Oracle.

4

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Program Agenda

History, facts

Getng the data with JCov

Applied to OpenJDK

Using the data

Links, more informaton

1

2

3

4

5

5

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 6

Facts

• JCov is a Java Code Coverage tool.
• The code coverage tool for JCK
• The code coverage tool for Oracle JDK.
• Other products:

–JavaFX
–SceneBuilder
–...

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 7

History

• 1996: First prototype
• 1997: Integraton with JDK 1.1
• 1998: Used “in producton”
• JDK 1.2
• …
• JDK 7
• 2014: Open-source as part of OpenJDK codetools project.
• 2014: JCov 3.0 – a public “release” supportng JDK 8
• JDK 9 – in progress

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

More on JCov dev

1.5 engineer at a tme, on average :)

Leonid Arbouzov, Alexander Petrov, Vladimir Generalov, Serguei Chukhontsev, Oleg
Uliankin, Gregory Steuck, Pavel Ozhdikhin, Konstantin Bobrovsky, Robert Field,
Alexander Kuzmin, Leonid Mesnik, Sergey Borodin, Andrey Titov, Dmitry Fazunenko,
Alexey Fedorchenko

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Code coverage is

● An informaton on what source code is exercised in executon

9

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Code coverage is

● An informaton on what source code is exercised in testng

10

● Actvites to prove that the code behaves as expected

Testng is
where ...

most ofen ...

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Other possible usages.

• Usage monitoring
• Save data in a test environment

• Check coverage from generated logic
• Fuzzing
• Load testing
• Regression test generation

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Program Agenda

History, facts

Getng the data with JCov

Applied to OpenJDK

Using the data

Links, more informaton

2

12

1

3

4

5

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 13

Getng the data

• A simplest use case
• A pick or two under the hood
• More possibilites

– Dynamic vs. statc instrumentaton
– Grabber
– Individual test coverage
– Abstract coverage
– Drop points
– Direct coverage
– Running big test suites

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Simplest use case

• Compile java fles as usual

• “Instrument” the byte code
java -jar jcov.jar Instr <application classes>

• Run the code
java -classpath ...:jcov_file_saver.jar ...

• Create a report
java -jar jcov.jar RepGen <jcov xml file>

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

A pick under the hood

15

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

JCov bytecode inserton

 public int getX();
 Code:
 0: ldc #31 // int 2
 2: invokestatic #29 \

 // Method com/sun/tdk/jcov/runtime/Collect.hit:(I)V
 5: aload_0
 6: getfield #2 // Field x:I
 9: ireturn

A pick under the hood

16

demo

Warning: the code is a subject to change!!!

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

JCov bytecode inserton

 public int getX() {
 com.sun.tdk.jcov.runtime.Collect.hit(2);
 return x;
 }

As if it was in Java

17

Warning: the code is a subject to change!!!

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Increasing the count

public class Collect {
 ...
 private static long counts[];
 ...
 public static void hit(int slot) {
 counts[slot]++;
 }
 ...
}

One step deeper

18

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Saving the data

 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 ...
 Collect.disable();
 Collect.saveResults();
 Collect.enable();
 ...
 }
 });

Finally ...

19

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 20

Performance impact

• Instrumentaton phase:
–proportonal to the applicaton code size.

• Executon phase:
–Counters increments - very low. Depends on the size of blocks.
–Saving data – from signifcant to blocking.

● There is a cure! :) More on next slides.
• Report generaton phase.

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

XML coverage data

<class name="Point" supername="java/lang/Object" ...>
 ...
 <meth name="getX" vmsig="()I" ...>
 <bl s="0" e="4">
 <methenter s="0" e="4" id="5" count="1"/>
 <exit s="4" e="4" opcode="ireturn"/>
 </bl>
 </meth>
</class>

21

demo

Warning: the format is a subject to change!!!

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Back to the simplest use case

• Compile java fles as usual

• “Instrument” the byte code
java -jar jcov.jar Instr <application classes>

• Run the code
java -classpath ...:jcov_file_saver.jar ...

• Create a report
java -jar jcov.jar RepGen <jcov xml file>

demo

Incomplete data!!!

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Code coverage template

• Describes all code there is to cover

• Created during instrumentaton:
java -jar jcov.jar Instr -t template.xml <in> <out>

• Created explicitly:
java -jar jcov.jar TmplGen -t template.xml <in>

• A regular JCov XML fle.
● Merge
● Filter
● etc. etc.

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Simplest use case corrected

• Compile java fles as usual

• “Instrument” the byte code
java -jar jcov.jar Instr -t template.xml <directory or jar>

• Run the code
java -classpath ...:jcov_file_saver.jar ...

• Merge with the template
java -jar jcov.jar Merger -o merge.xml template.xml result.xml

• Create a report
java -jar jcov.jar RepGen result.xml

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Simplest use case with fltering

• Compile java code

• “Instrument” the byte code
java -jar jcov.jar Instr -t template.xml \
 -i com.company.product \

<application classes>

• Run the code, merge with the template

• Create a report
java -jar jcov.jar RepGen \
 -e com.company.product.test result.xml

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

More on getng the data

26

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Dynamic instrumentaton

• Compile java fles as usual

• Run with an extra VM opton
java -classpath ... -javaagent:jcov.jar ...

• result.xml generated.

• Merge and flter by the template
java -jar jcov.jar Merger -o merge.xml \
 -t template.xml result.xml

demo

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Dynamic vs. statc instrumentaton

Dynamic Statc

Modifcaton of the tested
applicaton Not needed Needed

Coverage collected for All code(*) Instrumented code only

Test executon Modifed to pass more optons Modifed to add jcov code to
the classpath (**)

Performance Slows the classloading Faster

28

* There are options to limit the instrumented code
** Or inject the classes into the application itself

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

“Network” grabber

• Start the grabber on the network
java -jar jcov.jar Grabber … -hostname host123 -port 3333 \
 -t template.xml

• Run the tests
java -classpath ... \
 -javaagent:jcov.jar=grabber,host=host123,port=3333 \
 ...

• Stop the grabber – a data fle is generated
java -jar jcov.jar GrabberManager -kill

• Merge, generate report

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Individual code coverage

• Track code coverage on a per-test level
• “Usefulness” of the tests

Test 2

Code

Code

Code

Test 1

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Individual test coverage with JCov

• Data is encoded into the XML fle:
<class name="Component" supername="java/lang/Object" ...>
...
 <meth name="<init>" vmsig="()V" ...>
 <bl s="0" e="151">
 <methenter s="0" e="151" id="20" count="90359"
scale="08fffffffffee7d8eff
fffff3efffffefffffffffffffffffffffffffffffffffffffefffbfffffffffffffffbf
fffffffffffffffffd83fffffffffffffffffffffff1"/>
 <exit s="151" e="151" opcode="return"/>
 </bl>
 </meth>
...
</class>

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Test scales with fles

• Run tests separately, save result.xml's
$ java -classpath ... -javaagent:jcov.jar ... my.tests.TestN
$ cp result.xml result_TestN.xml

• Merge data fles
$ java -jar jcov.jar Merger -o merge.xml \
 -outTestList testlist.txt \
 -t template.xml result_*.xml

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Test scales with grabber

• Start the grabber
$ java -jar jcov.jar -scale -outTestList testlist.txt\
 -t template.xml

• Run tests separately, let the grabber know test names
$ java -classpath ... -javaagent:jcov.jar:grabber \
 -Djcov.testname=TestN ... my.tests.TestN

● Stop the grabber, generate report.

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Field coverage

• Generate template
java -jar jcov.jar TmplGen -field on -t template.xml <in>

• Instrumentaton
ldc // int 1951
invokestatic \
 // Method com/sun/tdk/jcov/runtime/CollectDetect.invokeHit:(I)V
getfield // Field x:I

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Abstract API coverage

• Generate template
java -jar jcov.jar TmplGen -abstract on -t template.xml <in>

• Run with abstract
java -classpath ... -javaagent:jcov.jar=abstract=on ...

• Instrumentaton
ldc // int 3012
invokestatic \
 // Method com/sun/tdk/jcov/runtime/CollectDetect.invokeHit:(I)V
invokeinterface // InterfaceMethod ...

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Save points

• Instrument
java -jar jcov.jar Instr -savebegin <a method name> \

-t template.xml <classes>

• Instrumentaton for the method:
0: ldc // int 14
2: invokestatic \
 // Method com/sun/tdk/jcov/runtime/Collect.hit:(I)V
5: invokestatic \
 // Method com/sun/tdk/jcov/runtime/Collect.saveResults:()V

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Direct coverage

• Only report code called directly from tests
• “Fair” coverage

● Controlled environment
● Meaningful parameters

Test

Code

Code

Code

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Direct coverage with no “inner invocaton”

• Instrument code only (not tests)
java -jar jcov.jar Instr -type method \
 -innerinvocation off \

-t template.xml <classes>
• Instrumentaton
ldc // int -1
invokestatic // Method \
 com/sun/tdk/jcov/runtime/CollectDetect.setExpected:(I)V
... // Some other code
ldc // int 0
invokestatic // Method \
 com/sun/tdk/jcov/runtime/CollectDetect.setExpected:(I)V
return

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Direct coverage with “caller include”

• Run tests, instrumentng code and the tests
java -classpath ...\
 -javaagent:jcov.jar=ci=<test packages>,type=method \
 ...
• Instrumentaton of test code
invokestatic \
 // Method com/sun/tdk/jcov/runtime/CollectDetect.setExpected:(I)V
invokevirtual // some product code call
• Instrumenton of product code
invokestatic \
 // Method com/sun/tdk/jcov/runtime/CollectDetect.hit:(III)V

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Collectng data for big suites

• Decide on dynamic vs statc
• Save data periodically

–Even in case of same vm
–Otherwise risking loosing the data

• Using fle
–One fle for all tests – getng bigger in tme – huge performance impact, if

multple VMs
–Separate fles for tests – takes a lot of tme to merge

• Use the grabber!
–Run test consequently for individual test coverage.

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 41

Getng the data

• Instrument dynamically or statcally
• Save the data onto a fle or grabber
• Individual test coverage
• Abstract coverage
• Fields coverage
• Data save points
• “Direct” coverage

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

There is more.
 Exec Executes a command collecting coverage data in a grabber
 Agent print help on usage jcov in dynamic mode
 Instr instruments classfiles and creates template.xml
 JREInstr instrumenter designed for instumenting rt.jar
 ProductInstr
 Instr2 instrumenter designed for abstract, native methods and fields
 TmplGen generates the jcov template.xml
 Grabber gathers information from JCov runtime via sockets
 GrabberManager control commands to the Grabber server
 Merger merges several jcov data files
 RepMerge merges jcov data files at method level not caring of blocks <deprecated>
 Filter filters out result data
 DiffCoverage check whether changed lines were covered
 RepGen generates text or HTML (or custom) reports
 JCov gets product coverage with one command

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

There is more. TmplGen

Verbosity: -verbose
Template specification: -template(t) 'string value'
Type of template: -type [all|branch|block|method]
Filtering conditions:
 -include(i) 'string value', -exclude(e) 'string value',
 -include_list 'string value', -exclude_list 'string value'
Specify which items should be additionally included in template:
 -abstract [on|off], -native [on|off], -field [on|off]
 -synthetic [on|off], -anonym [on|off]
Flush instrumented classes: -flush 'string value'
Basic options: -help(h, ?), -help-verbose(hv)
 -print-env(env), -propfile 'string value'
 -plugindir 'string value', -log.file 'string value'
 -log.level(log) 'string value'

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

There is more. Instr
Output: -instr.output(output, o) 'string value'
Verbose mode: -verbose
Type of template: -type [all|branch|block|method]
Filtering conditions: -include(i) 'string value’, -include_list 'string
value’, -exclude(e) 'string value’, -caller_include(ci) 'string value’,
-caller_exclude(ce) 'string value’, -exclude_list 'string value'
Save points: -savebegin 'string value’, -saveatend 'string value'
Template specification: -template(t) 'string value’, -subsequent
Items to be included: -abstract [on|off], -native [on|off], -field [on|off],
-synthetic [on|off], -anonym [on|off], -innerinvocation [on|off]
Flush instrumented classes: -flush 'string value'
Runtime management: -implantrt(rt) 'string value’, -recursive
Basic options: -help(h, ?), -help-verbose(hv), -print-env(env), -propfile
'string value’, -plugindir 'string value’, -log.file 'string value’,
-log.level(log) 'string value'

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

There is more. Merger.
Output file: -merger.output(output, o) 'string value'
File to read jcov input files from: -filelist 'string value'
Filtering conditions: -include(i) 'string value'
 -exclude(e) 'string value', -fm 'string value'
 -include_list 'string value', -exclude_list 'string value'
 -fm_list 'string value'
Process/generate test scales: -scale, -outTestList 'string value'
Verbose mode: -verbose(v)
Looseness level: -loose [0|1|2|3|blocks]
Compress test scales: -compress
Break on error: -breakonerror [file|error|test|skip|none], -critwarn
Template path: -template(tmpl, t) 'string value'
Skipped files: -outSkipped 'string value'
Basic options: -help(h, ?) -help-verbose(hv) -print-env(env)
 -propfile 'string value' -plugindir 'string value
 -log.file 'string value' -log.level(log) 'string value

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Program Agenda

History, facts

Getng the data

Applied to OpenJDK

Using the data

Links, more informaton

2

46

1

3

4

5

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

OpenJDK coverage. Very simple

• Template
java -jar jcov.jar TmplGen -t template.xml rt.jar
• Start grabber
java -jar jcov.jar Grabber -v -t template.xml start
• Execute tests
jtreg ... -javaoptions:"-javaagent:$JCOV_JAR=grabber" <tests>
• Stop grabber, merge, generate report
java -jar jcov.jar GrabberManager -kill
java -jar jcov.jar Merger -o merged.xml -t template.xml \
result.xml

java -jar jcov.jar RepGen -src jdk/src/share/classes merged.xml

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

OpenJDK coverage. Statc.

• Instrument
java -jar jcov.jar JREInstr ... -implant jcov.jar \
 -t template.xml .../jre
• Run tests, etc

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Program Agenda

History, facts

Getng the data

Applied to OpenJDK

Using the data

Links, more informaton

2

49

1

3

4

5

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 50

Using the data

• 100% coverage. Needed? Possible? Enough?
• Prioritzing
• Public API
• Monitoring coverage
• Speed up test executon
• More on test development prioritzaton
• Comparing suites, runs

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 51

Block coverage target value

Cost of testing

Defects found * COD

-

=

Return

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 52

100% block coverage 1

false
• 1 test
• 100% pass rate
• 100% coverage.
• The bug is not discovered

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 53

100% block and branch coverage 1

true

-1

false• 2 tests
• 100% pass rate
• 100% block coverage. 100% branch coverage.
• The bug is not discovered

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 54

Prioritzing test development

• 100% coverage is not the goal
• Too much code to choose from
• Filter the coverage data to leave only code to cover

–Public API
–UI
–Controller code (as in MVC)

• Prioritze code
–By age
–By complexity
–By bug density

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 55

Public API

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 56

Public API

• “Methods which supposed to be called directly from user code”
• Every method in public API needs to be called at least once (*)
• 100% public API does not prove anything
• Necessary. Not sufcient.
• Rather blunt soluton:
java -jar jcov.jar RepGen -publicapi ...

–In JDK8: public and protected methods of public and protected class in
java.* and javax.* (**)

–In JDK9: … something diferent

* More later
** Not completely accurate

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 57

JCov API

• com.sun.tdk.jcov.instrument.DataRoot
–Load, save

• com.oracle.java.sqe.inspection.JCovFinder,
JCovInspector, JCovVisitor
–walk over coverage data

• com.sun.tdk.jcov.instrument.DataBlock, DataBranch,
DataClass, DataMethod, DataPackage
–Investgate, edit

• com.sun.tdk.jcov.filter.MemberFilter, FilterSPI,
Filter JCov vommand
–flter

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 58

Abstract public API

• Code coverage
• Good API is abstract
• An abstract public API is covered when at least one of its implementatons

is covered.
• Done with JCov abstract coverage and fltering

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 59

“Public API implementaton”

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 60

Public API implementaton coverage

• Create template with abstract API
• Filter, only leaving

–Implementatons of public API
–Extensions of public API

• Filter coverage data by the template

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 61

Public API implementaton closure

• It may be required to extend the original set
//original public API
public interface Action { public abstract void perform();}
//some implementation
public class MySomethingAction implements Action{
 @Override
 public void perform() {
 //prepare something
 doPerform();
 }
 protected abstract void doPerform();
}

add to
flter

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 62

Public API closure

• A set of methods implementng library interface
–Non-abstract public API
–Implementatons of abstract public API
–Overrides of non-abstract public API
–“Delegaton” API

● closure of the delegaton API

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 63

Sane public API

“Every method in public API needs to be called at least once” - Is this so?
• Some code is trivial

–One line geters
–Overloads

• Diferent code requires diferent techniques.
–java.lang.Object.hashCode()

• Some code has low impact
–Excepton constructors

• More

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 64

UI code coverage

• Similar to public API:
–If there is a form in the product UI, it needs to be covered at least once

• Identfy UI code
–constructng UI objects
–displaying UI objects
–actons with UI

● javax.sing.Acton.actonPerformed

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 65

Controller code coverage

• Per MVC
–Controller accepts inputs and and converts to commands to view or

model
• Very litle boilerplate code
• In some cases identfable by classes and packages
• Could be marked explicitly. @Important

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 66

Linking CC to other characteristcs of the source code

Characteristc Reasoning

Age New code is beter to be tested before getng to customer.
Old code is either already tested or not needed. :)

Number of changes More tmes the code was changed,
more atomic improvements were implemented

Bug density Many bugs already found means there are more
hidden by existng bugs and more could be introduced with fxes

Complexity Assuming similar engineering talent and the same technology …
more bugs are likely to exist in complex code

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 67

Linking CC to other characteristcs of the source code

● A formula (1 – cc) * (a
1
*x

1
+ a

2
*x

2
+ a

3
*x

3
+ ...)

–cc – code coverage (0, 1)

–x
i
 - characteristc

–a
i
 – importance coefcient

• Coefcients are important

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 68

Code coverage monitoring

• Build by build
• Platorm to platorm
• JCov comparison report
• Homegrown database soluton (*)
• Requires an apparatus to compare the coverage data

* More at the end of the presentaton

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 69

Compare two run on the same build

• Comparison report
java -jar jcov.jar RepGen file1.xml file2m.xml

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 70

Compare two runs of diferent builds

• Bytecode is not comparable.
• Loose the details
java -jar jcov.jar Merger -loose blocks \
 file1.xml file2m.xml
• Only methods lef
<meth name="isInvalid" vmsig="()Z" ... id="18" count="150"/>
<meth name="getPrefixLength" vmsig="()I" ... id="30" count="28"/>

Comparison report
java -jar jcov.jar RepGen file1.xml file2m.xml

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 71

Subtracton

• Compare two suites A and B

• In (cc
a
 – cc

b
) only that code which is covered in cc

a
 and not in cc

b

• Using JCov API

–Load cc
a
, cc

b

–Walk over cc
a

–Search in cc
b

–If found – null the coverage

• Review (cc
a
 – cc

b
) and (cc

b
 – cc

a
)

demo

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 72

Test base reducton

• Collect coverage for tests individually and together.
• Compare coverage from every test to the combined coverage.

–if a test does not add coverage, execute it less
• Conscious choice.

–Remember that code coverage proves nothing.
–Only use for acceptance test cycles.
–Do not throw tests away – run every test although less ofen.
–Analyze tests with give no additonal coverage.

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 73

Using the data

• 100% coverage. Needed? Possible? Enough?
• Getng coverage subsets to cover 100%

• Public API
• UI
• Controller

• Monitoring coverage
• Test base reducton
• Prioritzing test dev by ranking
• Comparing suites, runs

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 74

More info

• Wiki: htps://wiki.openjdk.java.net/display/CodeTools/jcov
• Source: htp://hg.openjdk.java.net/code-tools/jcov
• Tutorial: htp://hg.openjdk.java.net/code-tools/jcov/raw-fle/tp/examples/tutorial/Tutorial.html
• How to build JCov: htps://wiki.openjdk.java.net/display/CodeTools/How+To+Build+JCov

• “Pragmatc code coverage” on slideshare.net

file:///Users/shura/Documents/JavaONE2014/
file:///Users/shura/Documents/JavaONE2014/
file:///Users/shura/Documents/JavaONE2014/
file:///Users/shura/Documents/JavaONE2014/

Copyright © 2014, Oracle and/or its afliates. All rights reserved. 75

More to come

• Plugins
–IDE: Netbeans, Eclipse, Intellij Idea
–maven

• Backend
–Coverage storage database
–Trends, statstcs
–Ranking

• Test base reducton

Hey, it's open-source! Contribute.

Copyright © 2014, Oracle and/or its afliates. All rights reserved.

Alexandre (Shura) Iline
JDK Test Architect
JDK SQE team
Sept 1, 2014

Java Code Coverage
with JCov
Implementaton Details and Use Cases

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 40
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 59
	Slide 63

