
Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Introduction to the Java Device I/O APIs

Jen Dority
Senior Member of Technical Staff
October 1, 2014

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Overview of The Device I/O OpenJDK Project

Building the Device I/O libraries

Using the Device I/O APIs

A closer look at working with GPIO, SPI, I2C and UART

More info

1

2

3

4

5

2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Overview of The Device I/O OpenJDK Project

Building the Device I/O libraries

Using the Device I/O APIs

A closer look at working with GPIO, SPI, I2C and UART

More info

1

2

3

4

5

3

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Device I/O Project

4

The Device I/O Project is an OpenJDK to provide a Java-level
API for accessing generic device peripherals on embedded
devices.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Device I/O Project

• Follows the JavaME Device I/O API

• Targets Linux/ARM SBCs

– Raspberry Pi

– SABRE Lite

• Supports an initial set of four peripheral device APIs
– GPIO

– SPI

– I2C

– UART

5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

The Device I/O Project

• Provides a consistent method for accessing low level peripherals on
embedded devices

• Is extendable with service providers

• Helps developers manage multiple hardware configurations by providing
the ability to assign logical names to devices

(continued)

6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Overview of The Device I/O OpenJDK Project

Building the Device I/O libraries

Using the Device I/O APIs

A closer look at working with GPIO, SPI, I2C and UART

More info

1

2

3

4

5

7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Building The Device I/O Libraries

• Supports building on a Linux host with ARM cross-compiler

• Requires JDK7 or JDK8, Linux/ARM cross-compiler and GNU Make

• Sample code may also use the Ant build tool

8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Building The Device I/O Libraries

• Define required environment variables

– export JAVA_HOME=<path to JDK>

– export PI_TOOLS=<path to Linux/ARM cross-compiler>

• Get the source

– hg clone http://hg.openjdk.java.net/dio/dev

• Build

– cd dev

– make

9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Building The Device I/O Libraries

• Completed library files will be in build directory

– <top-level>/build/jar/dio.jar

– <top-level>/build/so/libido.so

(continued)

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Overview of The Device I/O OpenJDK Project

Building the Device I/O libraries

Using the Device I/O APIs

A closer look at working with GPIO, SPI, I2C and UART

More info

1

2

3

4

5

11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Working With DIO APIs in Netbeans

Tools Java Platforms Add Platform . . .

Select “Remote Java Standard Edition” then click next

Fill in required fields then click “Finish”

Note: may need to use “root” credentials to run DIO apps
from netbeans

12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Working With DIO APIs in Netbeans (cont’d)

Right click on your project and select “Properties” Create a new configuration with your new remote
platform

13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Working With DIO APIs in Netbeans (cont’d)

Right click on “libraries” in your project tree and select
“Add JAR/Folder…”

Choose the dio.jar file

14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Using the Device I/O APIs

• Copy libido.so to your native java library path on the target device

–Or, specify its location with –Djava.library.path in VM options

• Specify -Djdk.dio.registry in VM options (or in the java command line) to use a
.properties file to preload a set of device configurations which you can refer to by a
numeric ID

• Use DeviceManager.list() to get a list of all preloaded and user-registered devices in the
system

• Get a device instance by using DeviceManager.open() methods

• When done with a device, be sure to call its close() method

• Access to devices depends on appropriate OS level access and new Java permissions

15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Overview of The Device I/O OpenJDK Project

Building the Device I/O libraries

Using the Device I/O APIs

A closer look at working with GPIO, SPI, I2C and UART

More info

1

2

3

4

5

16

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

A Closer Look . . .
GPIO

17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

GPIO

• General Purpose Input/Output

• Logical 1 or 0 controlled by software

• Dedicated to a single purpose

– Drive a single LED

– Status flag

– “bit-banging”

18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.gpio.GPIOPin

• Pin number

• Direction

– Input

–Output

• Trigger
– Rising

– Falling

• Mode – Not software configurable for Linux/ARM port

19

Key configuration details

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.gpio.GPIOPin

• Represents a single GPIO pin

• Can be configured as input or output

– Detect a button press

– Drive a single LED

• Can register listeners to handle “value changed” events

20

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21

GPIOPinConfig config =
new GPIOPinConfig(DeviceConfig.DEFAULT, // controller number

18, // pin number
GPIOPinConfig.DIR_OUTPUT_ONLY,
GPIOPinConfig.DEFAULT, // mode (ignored)
GPIOPinConfig.TRIGGER_NONE,
false); // initial value

. . .
GPIOPin outputPin = DeviceManager(config);

. . .
outputPin.setValue(true);

jdk.dio.gpio.GPIOPin

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 22

GPIOPinConfig config =
new GPIOPinConfig(DeviceConfig.DEFAULT,

23, // pin number
GPIOPinConfig.DIR_INPUT_ONLY,
GPIOPinConfig.DEFAULT,
GPIOPinConfig.TRIGGER_RISING_EDGE |

GPIOPinConfig.TRIGGER_FALLING_EDGE,
false); // initial value

. . .
GPIOPin inputPin = DeviceManager(config);

. . .
boolean pinValue = inputPin.getValue();

jdk.dio.gpio.GPIOPin

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23

inputPin.setInputListener(new PinListener() {
public void valueChanged(PinEvent event) {

System.out.println(“Pin value is now “ + event.getValue());
}

});

jdk.dio.gpio.GPIOPin

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

A Closer Look . . .
SPI

24

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

SPI

• Serial Peripheral Interface

• Single master/multiple slaves connected to a single bus

• Serial, full-duplex

• Bits shift in on MISO (Master In Slave Out) as they shift out on MOSI
(Master Out Slave In)

25

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.spibus.SPIDevice

• Device number

• Chip select address (device address)

• Chip select active level

– High, low, not controlled

• Clock mode – see javadocs for explanation

• Word length

• Bit ordering

26

Key configuration details

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.spibus.SPIDevice

• Represents an SPI slave device

• Provides methods to write, read and writeAndRead to/from the slave
device

–write(); read(); != writeAndRead();

• Allows you to surround a series of writes and reads with begin(), end() to
keep slave select line active

• Uses java.nio.ByteBuffer in API calls

27

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28

SPIDeviceConfig config =
new SPIDeviceConfig(DeviceConfig.DEFAULT, // Device Number

0, // SS connected to CE0
500000, // clock frequency
SPIDeviceConfig.CS_ACTIVE_LOW,
8, // 8-bit words
Device.BIG_ENDIAN);

. . .
SPIDevice spiDevice = DeviceManager.open(config);
. . .

jdk.dio.spibus.SPIDevice

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.spibus.SPIDevice

public int readChannel(int c) {
ByteBuffer out = ByteBuffer.allocate(3);
ByteBuffer in = ByteBuffer.allocate(3);
out.put((byte)0x01); // start bit
out.put((byte)(((c | 0x08) & 0x0f) << 4)); // single-ended, channel c
out.put((byte)0); // padding
out.flip(); // important!!! reset or flip buffer to start sending from

// the beginning
. . .

spiDevice.writeAndRead(out, in);
. . .
int high = (int)(0x0003 & in.get(1)); // first byte is padding, 10-bit result is
int low = (int)(0x00ff & in.get(2)); // contained in bit 1-0 of second byte and

// all eight bits of third byte
return (high << 8) + low;

}

29

MCP3008 Example

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

A Closer Look . . .
I2C

30

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

I2C

• Inter-Integrated Circuit

• Multi-master/multi-slave bus

– Device I/O supports only slave devices

–One master is assumed

• Serial, half-duplex

• One line for data, one for clock, no separate address lines

31

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.i2cbus.I2CDevice

• Controller number

• Slave address

• Address size

• Clock frequency

32

Key configuration details

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.i2cbus.I2CDevice

• Represents a I2C slave device

• Provides methods to read, write from/to slave device

• Allows you to surround a series of related writes and reads with begin(),
end()

• Uses java.nio.ByteBuffer in API calls

33

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.i2cbus.I2CDevice

I2CDeviceConfig config =
new I2CDeviceConfig(1, // i2c bus number (raspberry pi)

0x77, // i2c slave address (BMP180 press/temp sensor)
7, // address size in bits
3400000); // 3.4MHz clock frequency

. . .
I2CDevice i2cSlave = DeviceManager.open(config);

. . .
// read calibration data
ByteBuffer dst = ByteBuffer.allocate(22);// 22 = size (bytes) of calibration data
int bytesRead = i2cSlave.read(0xAA, // EEPROM start address

1, // size (bytes) of subaddress
dst);

34

BMP160 Example

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

A Closer Look . . .
UART

35

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

UART

• Universal Asynchronous Receiver/Transmitter

36

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.uart.UART

• Controller name or number

• Baud rate

• Parity

• Stop bits

• Flow control

37

Key configuration details

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.uart.UART

• Allows for control and access of a UART device

• Provides methods to for synchronous and asynchronous reads and writes

• Implements the java.nio.channels interfaces ReadableByteChannel and
WriteableByteChannel

• Uses java.nio.ByteBuffer in API calls

38

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

jdk.dio.uart.UART

UARTConfig config = new UARTConfig(“ttyAMA0”, // device name
DeviceConfig.DEFAULT, // channel
9600, // baud rate
UARTConfig.DATABITS_7,
UARTConfig.PARITY_NONE,
UARTConfig.FLOWCONTROL_NONE);

. . .
UART uart = DeviceManager.open(config);
OutputStream os = Channels.newOutputStream(uart);
BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(os));

writer.(“Hello”);

. . .

39

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

More Info

• Device I/O OpenJDK Project page

– http://openjdk.java.net/projects/dio/

• Device I/O mailing list

– http://mail.openjdk.java.net/mailman/listinfo/dio-dev

• Device I/O Wiki
– https://wiki.openjdk.java.net/display/dio/Main

• Device I/O mercurial repo

– http://hg.openjdk.java.net/dio/dev

40

http://hg.openjdk.java.net/dio/dev

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

41

