ORACLE

;eiz JavaOne

ORACLE

Java ME 8: Java that scales CREATE
from Desktop to Tiny Embedded THE

CONG6222 F U T U R E

Terrence Barr

Senior Technologist and Principal Product Manager
Java Embedded & Internet of Things
Oracle A

Sep, 2014

Program Agenda

E» Why Java ME 8?
E» Building a Smart Sensor
E» Setting up and Developing

E» Where to go next & Resources

S, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Why Java ME 87

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

S, JavaOner

ORACLE"

Java Embedded Enables New loT Services

A\

OO

)
Home Industrial Smart Healthcare Automotive
Automation Automation Utilities Telematics

S, JavaOner

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

ORACLE"

Java ME 8: Top 10 Features

Alignment with Java SE platform

Designed for Embedded

Highly Portable and Scalable

Consistent Across Devices

Advanced Application Platform

Modularized Software Services

Multiple Client Domains (Device Partitioning)
Access to Peripheral Devices

. Compatible to existing standard APIs

10. Dedicated Embedded Tooling

L 0N WUk WDNRE

S, JavaOner

— Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Java ME 8 Platform Overview

Use Case Software
(e.g. smart pen)

Use Case Software Use Case Software
(e.g. control unit) (e.g. smart meter)

Additional ereless Protocols and Security and Additional

APIs Data Conversion § Management Optional APIs

(Examples) . : Additional Vertical Specific
Location Web Services Optional JSRs APls

On-Device 1/0 Generic Connection Application Platform Security and Trust

Access Framework Services
Device I/O GCF 8 Java ME Embedded Profile SATSA
API (MEEP) 8 (JSR 361) (JSR 177)

IEVYERY Java ME Connected Limited Device Configuration (CLDC) 8 (JSR 360)

]avaOne

Use Case SoftwareJ
(e.g. wireless module

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

ORACLE"

Build a Smart Sensor

S, JavaOner

<

Smart Sensor Use Case Diagram

Platform 2 Platform 3
- - ----=-=== ~ \ - - ---- === \\
I
Development PC ,!; Smart Sensor App : 7 Smart Sensor App :
// | L ’ - ! :
¢ 1 : : I
/
/ : 7 ¢ | I :
‘ \ Linux © [:
/ \ A‘EJI, / ' ’
/ ~ e = N
y, “.=
/
Vi
Platform 1 /'Data flow 4
o ~ \ / _
| / 7
I Smart Sensor App ¥ / N
[/ s
| S s
I | S < /
I ' RasPi
I [Sensor J : Server
'\ Emulation I

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

S, JavaOner

ORACLE"

Smart Sensor Use Case

Connected Smart Sensor Use Case on loT Device

* Application Flow

Connect to 12C sensor and other peripherals (e.g. LED)
Connect to server via network

Periodially read sensor and blink LED as “heartbeat”
Process sensor values

Send sensor values to server

Repeat 3-5

After n seconds, exit app

1.
2.
3.
4.
5.
6.
7.

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Platform Comparison

__ Raspbery P High-end MCU Device

ARM Cortex-M4 @ 120 MHz

Approx. MIPS
oS

Java ME runtime

1/0

RAM
Persistent store

Power
Ruggedization

Cost in volume

]avaOne"‘

ORACLE"

X86 @ GHz
100,000
Windows 7

Emulation

Limited I/O
e LED and Sensor
emulation

 >=1GB
* Large disk

>=50W
Extra cost

>=~S300

ARM11 @ 700 MHz
900

Linux

Native ARM/Linux application

Some embedded I/O

e LED on GPIO
* Sensoron l2C

« 256 MB (or 512 MB)
e multi-GB flash disk

~35W
Fragile design

~$35

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

150

ARM mbed (or multiple others)

Binary image with Java runtime
+ native support

Lots of embedded I/O

LED on GPIO
Sensor on 12C

256 KB (on-chip)
1 MB flash (on-chip)
Maybe external flash space

Typ. few 100 mW

Easy (single-chip SOC)

S5 or less

Development Options

* On PC with Java runtime emulation
— Pros: All on one machine, no extra hardware, flexibility
— Cons: Not the real thing, limited I/0 emulation, memory/timing not accurate

* On Raspberry Pi or other desktop-class embedded device
— Pros: Real I/0, functionally rich (Linux, storage, networking, etc)
— Cons: Memory and timing not accurate, different to deployment device

* On Deployment Device, e.g. Micro-Controller
— Pros: Target hardware, built for use case (cost, power, size, physical, etc)

— Cons: May have limited flexibility, limited connectivity, limited/no debugging,
may be slow, may not be available until late in project

— lava O n e Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
=—d

— ORACLE

Java 8 for ARM Cortex-M3/M4 Micro-Controllers

* Java ME Embedded 8.1 Developer Preview ARM

— Supports Freescale FRDM-K64F

 Kinetis K64F, 120 MHz, 256 KB RAM/1 MB Flash, running ARM mbed OS
 Arduino form-factor and pin-out. Approx. $25 street price

— Java ME 8 functionality on small embedded & loT devices

* Feature-rich, optimized Java ME 8 runtime in 190 KB RAM, enabling highly
functional Java Embedded applications on single-chip micro-controller systems

* Simple installation Enabled
« Support for Java 8 language, core APIs, networking, device /0, storage, and more %o
o7

Rich development and tooling via Java ME SDK 8.1 and NetBeans 8 IDE - freescale”

Complements existing Java ME 8 platforms such as Raspberry Pi, scaling
Java ME 8 from large to small

Ideal for evaluation and prototyping of small embedded & loT solutions

— FREE download available now via Oracle Technology Network (OTN)

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Features: Developer Preview on FRDM-K64F

CLDC 8 “Full Profile”
MEEP 8 “Minimal Profile Set”

Application provisioning and control

GCF 8 API

NIO File API
Device I/0 API

Optional APIs

Networking

USB/serial

Tooling via ME SDK & NetBeans IDE
Ready-to-run, flashable binary

Free heap space for applications

S, JavaOner

ORACLE"

Full CLDC 8 VM, language, APl support
MEEP 8 application model (single application execution)

* Remote installation (onto SD card)
* Remote application execution and life-cycle control

Supported protocols:
* Socket, secure socket, HTTP, HTTPS, TLS 1.0

Access to SD file system for storage of applications, data, and configuration files

Supported interfaces/devices: GPIO, I12C, UART, ADC/DAC, SPI, PWM, Pulse
Counter, including on-board LEDs, buttons, and accelerometer, magnetometer

JSON, OAuth 2.0, Async HTTP (as application libraries, memory permitting)
Ethernet IPv4, DHCP or static addressing

Console output and logging

Edit, build, deploy, control (no on-device debugging due to memory limits)
Complete Java runtime (includes mbed kernel, native modules, Java libs)

Approx. 60 KB

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Setting Up and Developing

|12C Color Sensor

* 12C
— Inter-Integrated-Circuit bus
— Low-cost, low-bandwidth, 2 wire serial bus
— Multitude of devices available

* SeedStudio Grove 12C Color Sensor
— Built around TC3414CS
— Includes 12C pull-up resistors

— Measures red, green, blue, and clear (white)
— 16 bit digital out on 12C up to 400 KHz
— 12C Device Bus Address: 57 (x39)

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

/O Connections

GPIO, UART, 12C, SPI

AL 24 - bbb
g'l; (¥ ! (‘cs RG) €18

w2
S g r

TIITL ¥ g
P

o8
o

RasPil/O
Connector

GND

3.3V

GPI102

GPIO3

GPIO7

S, JavaOner

ORACLE"

GND

Enabled

FRDM-K64F 1/0

Connector
GND GND
3.3V VCC
! 12C
D14 SDA Light
Sensor

D15 SCL

LED: Onboard via LED_PIN_1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Development Setup

Develop & l, l,
Test
Development PC 4 Smart Sensor App _7 Smart Sensor App

Smart Sensor App

\\ / ¢

S

[Sensor] Server
Emulation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

S, JavaOner

ORACLE"

Developing with the Runtime Emulation

Install Java ME SDK & NetBeans
Install NetBeans Mobility plugin

Install NetBeans Java ME SDK plugins
Set up the Java ME platform in NetBeans

Create project

A S i

Use default device emulation or create custom device emulation

— See https://blogs.oracle.com/javatraining/entry/emulating i2c devices with java

7. Write and run the app

S, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Access to Peripheral Devices

Extensible I/O directly from Java applications

* Device I/O API

— Platform-neutral access to peripheral device hardware directly
from Java, no native coding involved

— Allows easy support of use-case specific peripherals,
such as sensors, actuators, converters, etc

— Extensible for specialized devices

— Supports a range of common I/O

* GPIO, 12C, SPI, ADC, DAC, UART, AT Commands, Pulse counter, PWM,
memory-mapped I/0, and more

— Also planned for Java SE

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Configuring custom GPIO in the Emulator

GPIO | 12¢ | sp1 | MmIO | ADC | DAC | Pulse Counters |

Pins
>~
Assign ID D Name H/W Port Number H/W Pin Number Direction Trigger Value Bind To Port Order
| 1|LED1 | 7| 3[output None | OmLlow |PORT7 |
Ports
=~
Assign ID D Name Direction Max Value Value
I PORT7 [Output l 1]

Add Pin] [Remove Pins J [Add Port] l Remove Ports

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

£, JavaOne’

ORACLE"

Configuring custom [12C in the Emulator

| GP1I0 | 12C | sp1 | MMIO | ADC | DAC | Pulse Counters |

() Custom

Implementation JAR File: ’ ‘ [Browse... }

Implementation Class Name: I ‘

Slaves
=
Assign ID D Name Bus Number Address Size Address
| 0|COLOR_SENSOR | 0|7 bits | 39

Add] { Remove

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

£, JavaOne’

ORACLE"

Java ME Application Model

Application lifecycle control

Public class SensorDemo extents MIDlet {
public void startBApp() { // called by AMS to start the app

// initialization code here ..
new MainController.start(); // then, run main thread

}

public void pauseApp() { // called by AMS to start the app

}

public void destroyApp(boolean unconditional) { // called by AMS to terminate the app
}

Public class MainController implements Runnable {

public void run() {
// main work happens here

<§Java0ne . o
— == Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
—

ORACLE"

Accessing the LED

if (RasPi) // RasPi

ledPin = LED PIN 7; // well-known platform value
else // Emulator or FRDM-K64F

ledPin = LED PIN 1; // well-known platform value

led = (GPIOPin)PeripheralManager.open(ledPin); // open connection to predefined pin
led.setValue(true); // LED on

led.setValue(flase); // LED off

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Accessing the Color Sensor

// For TC3414CS
if (RasPi) // RasPi
config = new I2CDeviceConfig(1l, 57, 7, 100000); // bus 1, address 57 (dec), 100 KHz clock
else // Emulator or FRDM-K64F
config = new I2CDeviceConfig(0, 57, 7, 100000); // bus 0, address 57 (dec), 100 KHz clock
device = (I2CDevice)DeviceManager.open(config); // open connection to sensor
// Access registers of TC3414CS
tx[0] = (byte)0x80; // control register offset
tx[1] = (byte)0x03; // set ADC EN to start measurement
device.write(tx, 0, 2); // write to device
tx[0] = (byte)(reg | 0x80); // reg: green = 0x10, red = 0x12, blue = 0x14, white = 0x16
device.write(tx, 0, 1); // write register offset
device.read(rx, 0, 1); // read low byte
tx[0]++; // register offset high byte
device.write(tx, 0, 1); // write register offset
device.read(rx, 1, 1); // read high byte
// compose 16-bit value from lower 8 bits in rx[0] and upper 8 bits in rx[1]
colorval = (O0xXFF & rx[0]) + (OXFF & rx[1l]) * 256;

'—(f) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved
L ORACLE A ’ ’ & ’

Connecting to the Server

// Using Java ME Generic Connection Framework (GCF)

serverUrl = “socket://” + serverIP + “:” + serverPort; // server address + port
socketConnection = (SocketConnection) Connector.open(url); // open connection
outputStream = new OutputStreamWriter (socketConnection.openOutputStream());
outputStream.write(“Hello”); // write to server

outputStream.flush(); // flush to make sure data is sent right away

S, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Server-side Code (Java SE)

// Standard Java SE code
while (true) { // repeat for each client that connects

// Wait for incoming client connection

clientSocket = serverSocket.accept();
// Connection made, get buffered input stream to client

input = new BufferedReader (new InputStreamReader (clientSocket.getInputStream()));

String inputLine;
while ((inputLine = input.readLine())
System.out.println("read: " + inputLine); // print on console

!= null) { // read lines until empty

input.close(); // close input stream
clientSocket.close(); // close socket

<§Java0ne . o
— == Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
—

ORACLE"

Running the Code on the Emulator

1. Run DemoServer (only need to start once, runs forever)

2. Select device (“EmbeddedSensorDevice”)

3. Run
— Start emulator in Java ME SDK
— Deploy application into emulator
— Run application, under control of AMS dialog

4. Observe I12C echo
5. Observe server output
6. Optional: Runin “Debug” mode

— lava O n e Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
=—d

— ORACLE

Developing on the RasPi or FRDM-K64F

1. Install Java ME runtime on device

2. Configure in jwc_properties.ini as needed
— Configure networking, enable debug agent, etc

3. Configurein policy.txt
— Add device access permissions for untrusted domains

4. On Raspberry Pi: Start Java ME Embedded runtime
5. Connect to board via ME SDK DeviceManager

6. When running application from NetBeans, select desired device

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Running the Code on the Raspberry Pi

1. Select device (“EmbeddedExternalDevicel”)
2. Run

— Deploy application into device (in NetBeans, via network)
— Run application, under control of AMS dialog

3. See sensor and LED in action
4. QObserve server output
5. Optional: Runin “Debug” mode

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Running the Code on the FRDM-K64

Scaling down is simple: Java ME does all the hard work for us!

1. Select device (“EmbeddedExternalDevice2”)

2. Run
— Deploy application into FRDM-K64F board via network
— Run application, under control of AMS dialog

= ... done!
— Nothing to do, only switch the deployment target
— Deploy exact same Java application binary to the loT device(s)

— No specialized expertise, porting, cross-compliation, platform dependencies,
specialized languages and tools, etc

— Life is good: Move from large systems to small loT platforms in seconds
£, JavaOne

— ORACLE Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Where to go next & Resources

Obviously, just a start!
Lots of Possibilities

»|Interface with more 1I/O
— Different sensors, actuators, other devices
= Add more software functionality

— Data proprocessing & filtering, notifications, alarms
— Enhanced networking (p2p, gateway, server, protocols, optimization, etc)
— Security (authentication, encryption, etc)

= Modularize and partition your software

— Seperation of concerns, easier development and update
— Add system management application to manage and control device and software

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Example: Industrial Control Demo
Smart Solar Tracking System with Remote Integration

Management access

Light source

o track l
Light Sensor 4)
Tracking & Control
Application
- J
12C ()
Java ME Embedded Runtime

.................

Remote
Management
and
monitoring

Tracking Device
(servos,

solar panel +

light sensor)

Push-Buttons
Joystick

KEIL board

S, JavaOner

= Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

RESTful server
(exchange data
with device)

Client PC
(manage via
JavaFX client)

Can be on same machine

Hints: Optimizing for Resource-Constrained Devices

* Design for the target
— Be aware of memory and processing limitations

— Partition your problem and keep local processing small & efficient, push
heavyweight operations to next tier (e.g. gateway or server)

— Leverage built-in Java ME 8 platform functionality

* Java 8 language features, application framework, security model, built-in libraries and
APls, communication protocols, I/O access, and more

* Conserve footprint
— Especially important on low-RAM devices (below ~300 to 400 KB RAM)
— Watch for number/size of classes & number/size of runtime objects
— Reduce jar size by building with debug info off and enabling obfuscation

£, JavaOner

- Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE!

Java ME 8 Resources

e Java ME 8 Oracle Technology Network (OTN) downloads
Free for development and evaluation purposes

e Oracle Java ME Embedded 8.1 Developer Preview
e Oracle Java ME SDK 8.1 Early Access #3

e http://www.oracle.com/technetwork/java/embedded/javame/embed-me/downloads/index.html

e Java ME 8 Documentation

e Developer Preview on FRDM-K64F: Release Notes, Getting Started Guide
e Java ME 8 Developer Guide, plus new chapter: Java ME Optimization Techniques
e Full Java ME 8 APl doc set

e http://docs.oracle.com/javame/8.0/
e Terrence Barr’s blog

e http://terrencebarr.wordpress.com/

'—({) lm Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle Confidential — Internal
L ORACLE pyrig) g g]

Questions?

S, JavaOner

. Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
ORACLE

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

£, JavaOne

— ST Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 39

Hardware and Software
Engineered to Work Together

;eiz JavaOne

ORACLE

ORACLE

