
Build a Java Debugger for the Cloud

Practices in the Ant Financial Cloud

San Hong Li

Jonathan Lu

About us

• San Hong Li
– Senior Expert, working on OpenJDK in Alibaba

• Jonathan Lu
– JDK Engineer from Alibaba Infrastructure Service Team

What to Expect

• By the end of this session, you should be able to:

– Understand why we need build a “cloud” debugger

– Gain insight into the implementation of Alibaba cloud debugger(named
as ZDebugger)

– Discover the features of ZDebugger for debugging Java applications
in the cloud

Agenda

1. Background: why we need build a ‘cloud ’debugger?

2. Show you code: How we implement the ZDebugger & changes made

to OpenJDK

3. Performance: How fast do we get data at a “breakpoint”?

4. Demo: What does it look like?

5. Wrap-up: Summary, and Next steps

Ant Financial Cloud Introduction

• Enable financial business agility: make the users
to be able to focus on the business requirements but
not the IT complexities and the common financial
concerns.

• Compliance with financial regulations and
supervisions: provide the common financial components
and best practices according to the financial
regulations and supervisions.

• Runtime support for java stack: middleware,
message queue and monitoring

• Continuous integration/delivery: provides source
control, build and package, deployment, test,
continues integration and delivery.

http://cloud.alipay.com/

http://cloud.alipay.com/

Challenges to debugging in cloud

• Need have exactly the
same code version in
Eclipse

Your app in the
cloud(TargetVM)

Local Debugger

Proxy(public ip:port)

We NEED a ‘cloud’ debugger

Security consideration: doesn’t permit an
incoming debug connection from debug clients
which are behind firewall

Performance requirement: doesn’t allow the
application to be suspended for a long time
during debugging

Business requirement: need the ability to allow
the user to enable the debugging capacity of
running target JVM on the fly

The debugger in IDE
can not help us in
cloud environment!

Introduction to ZDebugger

₱ Cloud debugger
o Deployed in cloud, use your browser to

debug the java applications on any machine
₱ Bound to cloud source repository

o Check out the code you are debugging
from repository automatically

₱ Watch Point
o Task a fast snapshot at Breakpoint (FSAB)

but without slowing down the service
₱ Debug-On-Late-Attach(DOLA)
o Don't require to re-boot JVM

when you want to debug your app.

ZDebugger Structure

Skeleton implementation of ZDebugger

Implemented as jetty based web server

• serves the debugging requests from browser

• converts to according JDI calls into target JVM over JDWP,

• listens on JDWP event queue (by one background thread)

• handles JDWP event from queue and

• updates message to the UI if appropriate(via websocket)

Set breakpoint as a example

(1) The user sets the breakpoint in browser: [class_name, line_number]
(2) Servlet receives request, converts to JNI call and creates a
breakpoint request to target VM

(3) One background thread is listening on event queue

(4) Update to UI

Challenges we encounter...

• How to set a breakpoint If the class is not loaded by target
JVM yet

• How to set a breakpoint for a inner class or the case that
different java classes are located in same java source file

• Integrate with code repository in cloud

• …

On demand debugging

The current implementation of HotSpot doesn’t

support the late attach for jdwp agent:

https://bugs.openjdk.java.net/browse/JDK-4841257

Why we need DOLA(Debug-on-Late-Attach)?

• In our production environment, for performance consideration,
we don’t start JVM with -agentlib:jdwp option

• It is hard to reproduce the problem if restarting the JVM
after the problem occurred

https://bugs.openjdk.java.net/browse/JDK-4841257

Debug on Late Attach

How to use it:
• java -XX:+DebugOnLateAttach HelloWorld
• jcmd [pid] AgentLib.load agent.name=jdwp

agent.options=transport=dt_socket,server=y,suspend=n,address=2012

DOLA only supports breakpoint set and variable inspections, but
they are enough for our use!

Debug on Late Attach(DOLA)
:Under the Hood

Implementation of DOLA

• Modify the interpreter of HotSpot to support breakpoint post in
bytecode patch path

• De-optimize all alive nmethods when the breakpoint is set
• For the case if the compiler doesn’t record all dependencies from

startup
• Add the Agent_OnAttach functionality to jdwp agent
• Extend the jcmd to support agent loading (usability improvements)

x x bp(202) getfield x

aload_0

bytecode stream

The Problem of Breakpoint...

The developer uses the breakpoint in traditional debugger, e.g. in
eclipse likes this:
• Set the breakpoint on the line of code
• When the thread gets suspended once the breakpoint is hit
o Inspect the stack frames, variables, etc.

Problem:

- The suspended period is NOT PREDICTED in the online production
environment, might cause the timeout of service serving!

Watchpoint for Our Needs

Watchpoint is a “customized” breakpoint:
 Set just likes a normal breakpoint
 Once a watchpoint is hit:
 Make a snapshot of:

 local variables
 Parameters
 instance variables
 stack frame

 send back to user’ UI for inspection
 This watchpoint will be disabled automatically after hit
unless you enable it explicitly again

Forget the BTrace, as the watchpoint in ZDebugger is more convenient for you 

Fast Snapsot at Breakpoint(FSAB)
:dissecting the watchpoint

In order to support watchpoint, AJDK implements a FSAB mechanism:

Implementation of FSAB

Highlights:
- Extend the JDWP to add new command for FSAB
- Make the snapshot of object graph inside JVM, not using JVMTi
- Use Google protobuf for data interchange format

AJDK : customized OpenJDK for Alibaba

In order to speed up the object scanning, serialize the object graph by
manipulating oop directly, instead of using standard JVMTi/JNI,
similar mechanism used by heap dumper, example code from heapDumper.cpp

Iterating over OOP

• HotSpot: Scan the object graph

• JDWP: Serialize to ProtoBuf message

• JDI: Deserialize vi java interfaces generated by protobuf on
debugger side

-

JVMTi/JNI Example

oop: pointer into the GC-managed heap

http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html

Evaluate the micro performance of FSAB made by JMH:

Performance of FSAB

jmh: Java harness for building, running, and analysing benchmarks written in Java
http://openjdk.java.net/projects/code-tools/jmh/

• Run netty-based application as a target app and inspect the

watchpoint via:

 (1) FSAB

 (2) Standard

The contributors:
 JDWP optimization(reducing

the jmx cost)
 oop-based object graph

scanning(vs JVMTi/JNI)
 protobuf(vs cjson)

max: ~30
improvements

What does it look like?

Demo

Next Step

 Project roadmap

 Deploy the ZDebugger as a shared service on the Ant Financial Cloud
and support multi-tenant debugging mode

 Contribution back to OpenJDK

 As for the DOLA&FSAB changes we made to OpenJDK, we would talk with
community and ask if there is any interest / if we should create a
JEP for that…

Summary

Now that we have completed this session:
- Describe the requirements why we need ZDebugger for cloud
debugging

- Go through how we implement ZDebugger
- Talk about the changes we made to OpenJDK: DOLA&FSAB
- Feature demo of ZDebugger

Q & A

Thank you!

