
Ian Robinson, IBM Distinguished Engineer, WebSphere Foundation Chief Architect

@ian__robinson

Is Enterprise Java
Still Relevant?

Erin Schnabel, IBM WebSphere developer/engineer/guru/evangelist

@ebullientworks

About Me

 IBM Distinguished Engineer

 WebSphere Foundation Chief Architect

 25 years experience in transaction processing and

distributed enterprise computing

 WebSphere product strategy & development and

enterprise Java standards
– Including spec lead for a JSR with only 2 digits in it.

 Travels a lot, based in IBM’s Hursley lab in the UK

(near Southampton).

 Season ticket holder for one of the least fashionable

clubs in English football:

Ian Robinson

2

3

Platform Boundaries Are Breaking Down In Cloud…

4

…And Being Surrounded By Containers

Java EE – Relevant or Elephant?

5
http://parentrap.org/2014/09/29/easy-parenting-part-iii-the-donts-list/

In The Beginning…

6

Application Server Tier

RDBMS TPM

Back-end
Services

Web Server Tier

 Was e-commerce

 Genuine IBM template from the 90s.

 But
– Web servers and CGI weren’t scaling

– The enterprise was all locked up

 The middle tier App Server

emerged to scale up

the front end and reduce

load on the back-end.

 Application architecture

still up for grabs.

In The Beginning…

7

Elastic Cache
(In-Memory
Data Grid)

Application Server Tier

RDBMS TPM

Back-end
Services

Web Server Tier

 Was e-commerce

 Genuine IBM template from the 90s.

 But
– Web servers and CGI weren’t scaling

– The enterprise was all locked up

 The middle tier App Server

emerged to scale up

the front end and reduce

load on the back-end.

 Application architecture

still up for grabs.

You’re Not On the List, You’re Not Coming In

 Servlets and JSPs were an entry point for the App-Server

middle tier, but Java was not a complete enterprise

architecture.

 For middle-tier enterprise computing, leave it to the Grown

Ups….

8

CORBA

CORBA – Great for Middleware
 CORBA gave us the underpinnings of distributed enterprise computing.

 Along with SOME separation of concerns.

 For example, take transactions…..

9

In
te

rc
e

p
to

r

In
te

rc
e

p
to

r

Inventory Service Order Service

CosTransactions CosTransactions

server server

ORB ORB IIOP
App Request

IIOP
2pc Protocol

begin/commit
export

context
import
context

app flows
m/w flows

CORBA – Not So Great for Applications

10

Order Service

CosTransactions

server

begin/
commit

getTransaction

Order DB

enlistResource CosTransactions::Resource
adapter

XA

J
D

B
C

/
O

D
B

C

query/update

getResource

Resource::commit

 No real separation between application and middleware

 No distinct application container contract

 Language agnosticism not so good for applications

app flows
m/w flows

Enterprise Java Containers – Separating Concerns

11

JTA
UserTransaction

TransactionManager
Transaction

server

begin/
commit

getTransaction
enlistResource

lookup in JNDI
query/update

Servlet
container

Connection Manager

Resource Adapter

XAResource

Connection

Managed
Connection

2PC

 Enterprise Java introduced application containers and defined proper separation

of concerns between application components and the containers they run in.

 In the Transaction example, this was started with the JTA and JCA specs.

 The application is responsible ONLY for transaction demarcation.

Order
Servlet

app flows
m/w flows

The Managed Component – EJBs!

12

JTA
UserTransaction

TransactionManager
Transaction

begin/
commit

getTransaction
enlistResource

lookup in JNDI
query/update

EJB
container

Order
EJB

Connection Manager

Resource Adapter

XAResource

Connection

Managed
Connection

2PC

 EJBs came next for even greater simplification

 Example: for the first time, transactions can be completely declarative and decoupled from app logic

 Along with declarative security model for a true “enterprise bean”.

 EJBs, more than any other spec, created the environment for the enterprise Java Platform that
became Java EE (originally J2EE) with multiple commercial vendor offerings.

server

app flows
m/w flows

In the Garden, the Flowers and the Weeds Grew

 EE specifications evolved

 New ones were added as SOAP-based

web services came into vogue

 EE got bigger and better.

 And bigger and bigger.

www.flickr.com/photos/ervins_strauhmanis
13

The Dawn of the Lightweight Framework

 J2EE 4 was a significant achievement and had a significant girth.

 Lightweight frameworks challenge the orthodoxy and Spring’s IOC container hit the sweet-spot for
developers:

– Inject container services  simplify test outside the EE environment.

 And while Java EE ploughed on full-steam ahead getting bigger and better, developers looked at their apps
and wondered how many really need all of Java EE?

 The Spring IOC container focusses initially on the most-used subset of EE web technologies
– Also introduces new web frameworks of its own.
– Over time adds more EE-like capability
– Sometimes just proxying EE technologies with Spring APIs.

 For more and more web apps, Spring is enough and EE is monolithic and old-school.

 Open source projects proliferate. LAMP stacks grow up alongside Java.

14

Java EE Simplification
 The Java EE Platform has strict compatibility rules

– Spring and arbitrary collections of frameworks have none of that and have the

flexibility to be as large or small as they like.

 With Java EE, you know how everything is supposed to behave with everything

else and there are strict rules to demonstrate compliance.
– Everything has to be there.

– Difficult to look agile against less, if less is enough.

 EE5 embraced Spring-like IoC for EJB3 and EE6 introduced CDI components to

enable resources to be contextualized to web-request scope.

 EE6 introduced a sub-set Web Profile with separate compliance against a

smaller set of coherent technologies.

15

Is Web Profile Enough?

 More than enough for many

apps

 Nowhere near granular

enough for next generation

applications.

Web Profile specification

16

Modular Java EE - Does OSGi Help Here?

 Does OSGi help Enterprise Java?

 OSGi is a mature and well-used Java Modularity System.

 OSGi Enterprise Spec added to OSGi R5 following creation of OSGi

Enterprise Expert Group to bring enterprise application technologies to

OSGi.

 OSGi applications can run well in the EE environment
– Variety of ways these can be deployed, as EE or non-EE apps.

 Various open source projects in Apache and Eclipse developed

specifications for how enterprise OSGi applications could consume EE

technologies like servlets, JNDI, JPA, transactions, JMX as well as

Spring-like managed beans and web components.

 Major benefit of this work was the “feature” construct in OSGi R5.

17

The WebSphere Omelette Challenge

 In WebSphere we primarily use OSGi to build an EE compliant but fully-modular application

server for Java EE applications.
– For this, OSGi is all on the “inside” and not visible to Java EE applications which are deployed

as standard EARs or WARs.

 We did this in response to the following challenge in 2011:
– Create a lightweight profile of WebSphere AppServer that starts in under 2 seconds

– Make it completely dynamic for all changes to configuration

– Provide an unzip install ~60 Meg in size

– Provide complete backward compatibility

– Remain EE compliant

– But don’t break any eggs.

18

X

A La Carte Features, Prix Fixe EE Profiles

 We created WebSphere Liberty to supports arbitrary combinations of runtime “features” in

addition to pre-defined sets for Web Profile and Full Java EE.

 Remember the eggs: any app running on WebSphere Liberty runs

unchanged on the previous version of WebSphere.

 Runtime bundles loaded and configured by OSGi subsystem-aware kernel as independent

feature subsystems.

 Entirely self-contained metadata to describe bundle content, services published, &

configuration metatypes.

 We use features as units of:
– Deployment

– Configuration

– Extensibility

19

Bundle A

Bundle B

Bundle C

Feature

Manifest

Config

Metatype.xml

“Feature”

scalingController-1.0

scalingMember-1.0

dynamicRouting-1.0

collectiveController-1.0 clusterMember-1.0

healthManager-1.0 healthAnalyzer-1.0 WebSphere

Liberty ND

Java EE 6

subset
couchdb-1.0

mongodb-2.0

wsSecurity-1.1

javaee-7.0

batchManagement-1.0

rtcomm-1.0 rtcommGateway-1.0
WebSphere

Liberty

sipServlet-1.0

A Composable Java EE Runtime

WebSphere

Liberty Core

webProfile-6.0

distributedMap-1.0

openid-2.0

openidConnectServer-1.0

openidConnectClient-1.0

osgiAppIntegration-1.0

spnego-1.0

collectiveMember-1.0

restConnector-1.0

sessionDatabase-1.0

ldapRegistry-3.0

webCache-1.0

javaMail-1.5

osgiConsole-1.0

json-1.0

timedOperations-1.0 monitor-1.0

oauth-2.0

serverStatus-1.0

wab-1.0

blueprint-1.0

webProfile-7.0

eventLogging-1.0

requestTiming-1.0

adminCenter-1.0
concurrent-1.0

bells-1.0

samlWeb-2.0

scalingController-1.0

scalingMember-1.0

dynamicRouting-1.0

collectiveController-1.0 clusterMember-1.0

healthManager-1.0 healthAnalyzer-1.0

Java EE 6

subset
couchdb-1.0

mongodb-2.0

wsSecurity-1.1

javaee-7.0

batchManagement-1.0

rtcomm-1.0 rtcommGateway-1.0
sipServlet-1.0

webProfile-6.0

distributedMap-1.0

openid-2.0

openidConnectServer-1.0

openidConnectClient-1.0

osgiAppIntegration-1.0

spnego-1.0

collectiveMember-1.0

restConnector-1.0

sessionDatabase-1.0

ldapRegistry-3.0

webCache-1.0

javaMail-1.5

osgiConsole-1.0

json-1.0

timedOperations-1.0 monitor-1.0

oauth-2.0

serverStatus-1.0

wab-1.0

blueprint-1.0

webProfile-7.0

eventLogging-1.0

requestTiming-1.0

adminCenter-1.0
concurrent-1.0

bells-1.0

samlWeb-2.0

Composable Java EE 6 Web Profile

servlet-3.0

jsp-2.0

jsf-2.0

ejbLite-3.1 jdbc-4.0

jndi-1.0

appSecurity-2.0

managedBeans-1.0

ssl-1.0

beanValidation-1.0

cdi-1.0

jpa-2.0

WebSphere

Liberty ND

WebSphere

Liberty

WebSphere

Liberty Core

scalingController-1.0

scalingMember-1.0

dynamicRouting-1.0

collectiveController-1.0 clusterMember-1.0

healthManager-1.0 healthAnalyzer-1.0

Java EE 6

subset
couchdb-1.0

mongodb-2.0

wsSecurity-1.1

javaee-7.0

batchManagement-1.0

rtcomm-1.0 rtcommGateway-1.0
sipServlet-1.0

webProfile-6.0

distributedMap-1.0

openid-2.0

openidConnectServer-1.0

openidConnectClient-1.0

osgiAppIntegration-1.0

spnego-1.0

collectiveMember-1.0

restConnector-1.0

sessionDatabase-1.0

ldapRegistry-3.0

webCache-1.0

javaMail-1.5

osgiConsole-1.0

json-1.0

timedOperations-1.0 monitor-1.0

oauth-2.0

serverStatus-1.0

wab-1.0

blueprint-1.0

webProfile-7.0

eventLogging-1.0

requestTiming-1.0

adminCenter-1.0
concurrent-1.0

bells-1.0

samlWeb-2.0

servlet-3.1

jsp-2.3

jsf-2.2

ejbLite-3.2 jdbc-4.1

jndi-1.0

appSecurity-2.0

managedBeans-1.0

ssl-1.0

beanValidation-1.1

cdi-1.2

jpa-2.1

el-3.0 websocket-1.1

websocket-1.0

jsonp-1.0

jaxrs-2.0 jaxrsClient-2.0

WebSphere

Liberty ND

WebSphere

Liberty

WebSphere

Liberty Core

Composable Java EE 7 Web Profile

scalingController-1.0

scalingMember-1.0

dynamicRouting-1.0

collectiveController-1.0 clusterMember-1.0

healthManager-1.0 healthAnalyzer-1.0

Java EE 6

subset
couchdb-1.0

mongodb-2.0

wsSecurity-1.1

javaee-7.0

batchManagement-1.0

rtcomm-1.0 rtcommGateway-1.0
sipServlet-1.0

webProfile-6.0

distributedMap-1.0

openid-2.0

openidConnectServer-1.0

openidConnectClient-1.0

osgiAppIntegration-1.0

spnego-1.0

collectiveMember-1.0

restConnector-1.0

sessionDatabase-1.0

ldapRegistry-3.0

webCache-1.0

javaMail-1.5

osgiConsole-1.0

json-1.0

timedOperations-1.0 monitor-1.0

oauth-2.0

serverStatus-1.0

wab-1.0

blueprint-1.0

webProfile-7.0

eventLogging-1.0

requestTiming-1.0

adminCenter-1.0
concurrent-1.0

bells-1.0

samlWeb-2.0

Fully Composable Java EE 7

servlet-3.1

jsp-2.3

jsf-2.2

ejbLite-3.2

jdbc-4.1

jndi-1.0

appSecurity-2.0

managedBeans-1.0

ssl-1.0

beanValidation-1.1

cdi-1.2

jpa-2.1

el-3.0

websocket-1.1

websocket-1.0

jsonp-1.0

jaxrs-2.0 jaxrsClient-2.0

concurrent-1.0

appClientSupport-1.0

ejbPersistentTimer-1.0

ejbHome-3.2

ejbRemote-3.2

ejb-3.2

mdb-3.2

j2eeManagement-1.1

jacc-1.5

jaspic-1.1

jca-1.7

jms-2.0

wmqJmsClient-2.0

wasJmsClient-2.0

jaxws-2.2

jaxb-2.2

batch-1.0 javaMail-1.5

WebSphere

Liberty ND

WebSphere

Liberty

WebSphere

Liberty Core

<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>jdbc-4.1</feature>
 </featureManager>

 <webApplication id="blogapp“
 location="blogapp.war" name="blogapp"/>

 <include location="${shared.config.dir}/datasource.xml"/>
</server>

Server Config: features, apps, resources

'instance' configurations specify
multiple resources like applications
and datasource definitions

Features control which capabilities
(bundles) are installed in the server

Any of this configuration could be put
into a separate xml file and 'included' in
this 'master' configuration file

Barriers to Java EEnext Adoption
#1 is Migration cost. Every spec breaking change and non-propagated bug

costs our customers money

- An issue for EE vendors and framework-providers alike…

“We intend to softly upgrade the EE baseline as well.
Now, this is a bit tricky since we effectively have individual requirements here - and we need to
consider the enterprise adoption levels in production environments:
• We’ll definitely raise to Servlet 3.0+ (from our present Servlet 2.5 runtime compatibility) but no

higher since we’d like Spring 5 applications to run on EE 6 baselined servers still. See my previous
blog post for a discussion on why this is unavoidable, given the market situation with Java EE 7 and
the multitude of servers which is still based on the Servlet 3.0 API.

• We’ll keep our JMS 1.1+ compatibility since, aside from the EE 7 issue, we expect message
brokers in the corporate world which are not necessarily upgraded to JMS 2.0 yet. Spring’s JMS
support automatically adapts to JMS 2.0 anyway, so there shouldn’t be any lack in functionality. It’s
just a shame that we have to keep supporting the 2002-era JMS 1.1 API…

• We’d like to raise to JPA 2.1+ and Bean Validation 1.1+ but our hands seem to be tied: TomEE
1.7 and JBoss EAP 6.4 have hard JPA 2.0 and Bean Validation 1.0 APIs in them, and WebLogic
12.1.3 has JPA 2.1 but no Bean Validation 1.1 API (despite them being related).

• This means we’ll have to keep detecting JPA 2.1 / BV 1.1, automatically adapting to them - or we’ll
require local bundling of the JPA 2.1 / BV 1.1 API jars and corresponding providers. A likely
outcome is that we’ll streamline our setup towards JPA 2.1, just tolerating JPA 2.0 at runtime
through fallback checks, similar to how we handle Servlet 3.0 vs 2.5 at present.”

https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
Spring 5 System Requirements Discussion, June 10, 2015

WebSphere
Liberty 8.5.5.7

servlet-3.0

old
 app

The obvious solution is not

that widely available.

 - Although WebSphere has it 

servlet-3.1

new
 app

https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements
https://spring.io/blog/2015/06/10/feedback-welcome-spring-5-system-requirements

Just bake what you
need inside – right?

Is A Virtualization Container Really All We Need?

 A good unit of isolation
– Full-stack delivery good for blue/green deploy.

– High degree of control over container content

 But the App/Service in the virtualization

container doesn’t run in a vacuum.
– Still an App Container of some description

inside.

 Flowers and weeds take root inside the

virtualization containers now…

 Java EE can be successful in this world but only

if right-sized within the virtualization container.

26

Customized Docker containers for Java EE
 WAS Liberty images on Docker Hub

– WAS Liberty containers (currently V8.5.5.7):
 Kernel, Java EE 6 Web Profile, Java EE 7 Web and Full Profile and latest Beta images

 Docker files: https://github.com/WASdev/ci.docker

 Dockerfiles in on WASdev GitHub to:
– Simple layer to upgrade to commercial license

– Build your own customized image based on required features

hub.docker.com/_/websphere-liberty

kernel common webProfile7 javaee7

webProfile6beta

FROM websphere-liberty:kernel

COPY server.xml /opt/ibm/wlp/usr/servers/defaultServer/

RUN installUtility install defaultServer

https://github.com/WASdev/ci.docker
https://github.com/WASdev/ci.docker

28

FROM websphere-liberty:kernel

COPY server.xml /opt/ibm/wlp/usr/servers/defaultServer/

RUN installUtility install defaultServer

<server description=“BlogServer">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>jdbc-4.1</feature>
 </featureManager>

 ...
</server>

Customized Docker containers for Java EE

/opt/ibm/wlp/usr/servers/defaultServer/server.xml

dockerfile

1. Want image for this

2. Identify required features 3. Add only the required features

Why Do I Care About App Containers In Cloud?

 Just push the Java App: the rest is a cloud detail
– Could be any app container in the cloud

– Configuration largely out of my hands

 If I need to customize the container config I can
– But then I start to care about the app container

 For greater control, push the app container too
– More stuff for me to own but greater control.

– Better portability across clouds

 For greatest control, virtualize only at the IaaS
– Easiest way to shift existing workloads to cloud with

no change

 Only in the very simplest case do I not care about

the app container.

cf push
app.war

PaaS

IaaS/CaaS

VM

IaaS

VM

IBM Bluemix Cloud and Java EE

cf push
app.war

PaaS

IaaS/CaaS

VM

IaaS

VM

Java EE in a Multi-Cultural Society
 Cloud unifies the management of different types

of application container.
– The 2 most popular runtimes in IBM Bluemix

are Java and Node.js

 Significantly ahead of others

 Node and other containers often compliment

Java rather than replace it
– E.g. using Node LoopBack framework to

expose new APIs to existing Java services

 Cloud is providing new ways to deploy Java EE

and driving additional workloads to it through

multi-lingual API explosion

 Some commentators characterize cloud apps,

mixing EE technologies with cloud services, as

Java-but-not-EE applications.
– Because they confuse Java EE with monolithic

implementation. CHALLENGE THIS!!

Faban Workload

Remote EJB

Jax-ws

System Under Test

Supplier Domain

Mfg Domain

Orders Domain

JMS

JMS

JPA

JPA

JPA

Database
Server

HTTP

Emulator

Jax-ws

Purchase
Order

Delivery

Dealer driver

Mfg driver

Is This a Modern Application?

A Benchmark Living in the Past – SPECjEnterprise2010

 This is Java EE5 technology!

– Not even EE6 let alone EE7.

 JCP Members are the primary contributors to this benchmark and are holding it back.

 What are you scared of? More vendors?

 Where is the web profile

compliant subset?

 Where is EE7?
– We can skip EE6…

 Run rules to allow cloud publish?

About Erin

 IBM Senior Software Engineer

 WebSphere Liberty architect

 Founding technical leader/developer for WAS Liberty

 Saturated in app-server internals and wire protocols

(16+ years worth)

 Champion of composable runtimes, and object- or

service-oriented approaches to decomposing complex

systems

 Lives in Poughkeepsie, NY

 Family, kids, code, caffeine; all is well.

Erin Schnabel

34

Game On!
A throwback text-based adventure

You are in a maze of little interconnected rooms,
none alike.

And you aren’t alone

Player

Game On!
A throwback text-based adventure

JS

Player

Concierge

Leaderboard

Room

Room
Room

JAX-RS

JAX-RS

WebSocket

Java EE7

37

 Java EE is at a crossroads.

 Still strong and relevant at the cloud party, BUT younger guests are

making more noise.

– Vendors support an increasingly diverse cloud environment

 Enterprise incumbency = strength and weakness:

– Customers want NEW without breaking EXISTING

– NEVER break backward compatibility - sacrifices incumbency.

 Forward-looking EE 8 focus on web standards is good.

 Multi-tenancy? These days I’ll use a virtualization container for that.

 And finally: stuff around the edges is critical

– Still need to evangelize: SHOUT louder about lightweight Java EE

– And lets get serious about a modern, lightweight EE7 benchmark

Java EE Outlook

https://www.flickr.com/photos/akaitori

Ian Robinson, IBM Distinguished Engineer, WebSphere Foundation Chief Architect

@ian__robinson

Thank You!
See us at the IBM Booth

Erin Schnabel, IBM WebSphere developer/engineer/guru/evangelist

@ebullientworks

