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Safe Harbor Statement 

The following is intended to outline our general product direction. It is intended for 
information purposes only, and may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, and should not be relied upon 
in making purchasing decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole discretion of Oracle. 
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Survey: Which JDK train are you using in production? 
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• JDK 9 EA with Jigsaw 

• JDK 9 EA 

• JDK 8 

• JDK 7 

• JDK 6 

• JDK 5.0 

• JDK 1.4.2 or earlier 
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JDK 9 
Overview 
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JDK 9 Information 

• Current schedule: GA September 22, 2016 

• Early access binaries + docs, updated weekly: https://jdk9.java.net/ 

• Early access binaries with Jigsaw: https://jdk9.java.net/jigsaw/  

• OpenJDK : 

• Project:  http://openjdk.java.net/projects/jdk9/ 

• Mailing list: http://mail.openjdk.java.net/mailman/listinfo/jdk9-dev 

• Source code: http://hg.openjdk.java.net/jdk9/dev/ 

• Adoption:  http://mail.openjdk.java.net/pipermail/adoption-discuss/  

• JEPs (JDK Enhancement Proposals) used for project tracking 
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Capsule summary of modularity language impact in JDK 9 

• Modules bundle together one or more packages and offer stronger 
encapsulation than jars 

• module-info.java files to declare dependencies between modules 

• Changes to javac command line to find types in modules as well as in jars 

• For (much) more information see sessions: 
• Introduction to Modular Development [CON5118], Wednesday, Oct 28, 1:00 pm 

• Advanced Modular Development [CON6821], Thursday, Oct 29, 2:30 pm 

• Prepare for JDK 9 [CON5107], Monday 

• Project Jigsaw: Under the Hood [CON6823], Monday 
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Outline 

• User-facing features 

• jshell 

• JavaDoc.Next 

• Cross compiling and the javac -release flag 

• Milling Project Coin (five tiny language improvements) 

• Deprecation and imports 

• Reengineering javac 
• Tiered Attribution 

• Q & A 
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jshell 
JEP 222: jshell: The Java Shell (Read-Eval-Print Loop) 
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A historical perspective 

• Lisp systems decades back provided a read-evaluate-print-loop (REPL) to 
interact with the language 

• Similar functionality is found in Ruby and Python as well as Scala, Groovy, 
and Clojure 

• What about Java? 
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jshell – new command in $JDK/bin in JDK 9 

• Less ceremony for students learning Java 

• Less formal way for experienced developers to 

• Explore using a new API 

• Experiment with new language features 

• Leverages many existing JDK technologies 

• Dedicated session: jshell: The New Interactive Java Language Shell for JDK 9 
[CON7823], Wednesday, Oct 28, 8:30 a.m. 

Teaser DEMO 
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Project Kulla: http://openjdk.java.net/projects/kulla/ 
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JavaDoc.Next 
http://openjdk.java.net/projects/javadoc-next/ 
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HTML 5 

• The javadoc tool has historically generated HTML 4.01 output 

• HTML 5 is a new HTML standard, finalized October 2014 

• Richer semantic structure 

• New attributes defined 

• Use  
    javadoc -html5 … 
to opt-into the new output 

• (Still uses frames-style layout) 
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JEP 224: HTML5 Javadoc 
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Doclint and package filtering 

• Doclint, added in JDK 8, performs various structural and semantics checks 
on javadoc tags in various categories: 

• Accessibility: conditions that may be flagged by an accessibility checker, such as 
obsolete attributes or headers out of sequence 

• HTML: HTML conformance issues (vary with DOCTYPE), e.g. anchor already defined, 
bad start-end tag matching 

• Missing: missing comment or missing tag within a comment (e.g. not all parameters 
have a @param tag) 

• Reference: the target of an @see, @link, @throws, etc. is invalid 

• Syntax: malformed HTML in comments 
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Configuring doclint 

• Doclint checks can be run as part of javadoc or as part of javac; 
(both used in JDK build) 

• HTML checks are appropriate for chosen version of HTML output 

• Checks can be limited to chosen language accessibility (public, protected, …) 

• Checks can be enabled / disabled per category 

• Example, for public and protected types, do all checks except for reference: 
-Xdoclint:all/protected,-reference 

• Checks can be limited to selected packages (new in JDK 9): 

• To check java.* and javax.*: '-Xdoclint/package:java.*,javax.*' 

• To exclude example.com: '-Xdoclint/package:-example.com.*' 
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Simplified Doclet API 

• Doclets are plugins to javadoc; standard doclet most commonly used 

• Doclet APIs 

• Don’t follow current best-practices for API design 

• Uses an inaccurate and hard to evolve language model 

• Replace old Doclet APIs with newer APIs with better functionality 

• Use javax.lang.model API for language model 

• Use DocTree API (com.sun.source.doctree) 

• Simpler and more compact 
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JEP 221: Simplified Doclet API 
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javadoc search: coming soon to a future JDK 9 build… 

• By default javadoc output will have a search box 
• Client-side implementation in JavaScript 

• Indexes package names, type names, member names 

• New tag to add other index items 

DEMO 
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JEP 225: Javadoc Search 
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Cross-compiling and the –release flag 
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Cross-compiling to older releases 
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https://blogs.oracle.com/darcy/entry/how_to_cross_compile_for 

• To use javac to compile to older release N,  
must set 

• -source N 

• -target N 

• -bootclasspath jdkN/lib/rt.jar 
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Policy on older releases: 1 + 3 back 

• Started implementing in JDK 8 

• In JDK 9, -source/-target supported values: 

• 9 (the default) 

• 8 

• 7 

• 6 (deprecated, warning issued when used) 
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JEP 182: Policy for Retiring javac -source and -target Options 
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Why the bootclasspath needs to be set 

// JDK N 
public class Library { 
  public void foo(double d) {…} 
} 
 
// JDK N+1 
public class Library { 
  public void foo(double d) {…} 
  public void foo(int i) {…} 
} 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.   21 

Why the bootclasspath needs to be set 

// JDK N 
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  public void foo(double d) {…} 
} 
 
// JDK N+1 
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  public void foo(double d) {…} 
  public void foo(int i) {…} 
} 

public class Client { 
  public static void main(String… args) { 
     (new Library()).foo(1234); 
  } 
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Why the bootclasspath needs to be set 

// JDK N 
public class Library { 
  public void foo(double d) {…} 
} 
 
// JDK N+1 
public class Library { 
  public void foo(double d) {…} 
  public void foo(int i) {…} 
} 

public class Client { 
  public static void main(String… args) { 
     (new Library()).foo(1234); 
  } 
} 

If Client is compiled against JDK N+1 but  
run against JDK N: 
Exception in thread "main"  
java.lang.NoSuchMethodError: Library.foo(I)V 
 at Client.main(Client.java:3) 
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An explicit warning as of JDK 7 

• javac –cp … -source 6 -target 6 Client.java  
warning: [options] bootstrap class path not  
set in conjunction with -source 1.6 

• The warning can be suppressed with  
 -Xlint:-options 
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An explicit warning as of JDK 7 

• javac –cp … -source 6 -target 6 Client.java  
warning: [options] bootstrap class path not  
set in conjunction with -source 1.6 

• The warning can be suppressed with  
 -Xlint:-options 

• But despite the warning, bugs still came in… 
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JDK 9’s do-what-I-want approach: -release N 

• javac -release N …  
is equivalent to 
javac -source N -target N –bootclasspath rtN.jar…  

• Information about APIs of earlier releases available to javac 
• Stored in a compressed fashion 

• Only provide Java SE N and JDK N-exported APIs that are platform neutral 

• Same set of release values N as for -source / -target 

• Incompatible combinations of options rejected 
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JEP 247: Compile for Older Platform Versions 
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Advantages of -release N 

• No user need to manage artifacts storing old API information 

• Should remove need to use tools like Animal Sniffer 

• May use newer compilation idioms than the javac in older releases 
• Bug fixes 

• Speed improvements 

24 

http://www.mojohaus.org/animal-sniffer/


Copyright © 2015, Oracle and/or its affiliates. All rights reserved.   25 

http://openjdk.java.net/jeps/213 

Milling Project Coin in JDK 9 
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Project Coin features in JDK 7 

• Binary literals and underscores in literals 

• Strings in switch 

• Diamond 

• Multi-catch and more precise rethrow 

• try-with-resources 

•  Varargs warnings 
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Standardized under JSR 334 

https://jcp.org/en/jsr/detail?id=334
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A few small amendments in JDK 9 

• Allow @SafeVargs on private instance methods. 

• Allow effectively-final variables to be used as resources  
in the try-with-resources statement. 

• Allow diamond with anonymous classes if all 
type arguments of the inferred types are denotable. 

• Complete the removal, begun in Java SE 8,  
of underscore from the set of legal identifier names. 

• Source-level private interface methods. 

27 
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Project Lambda 
amendments 
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@SafeVarargs on private instance methods 
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Example from JDK 5.0 and 6 

 List<List<String>> monthsInTwoLanguages = 

      Arrays.asList(Arrays.asList("January", "February"), 

                    Arrays.asList("Gennaio", "Febbraio")); 
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See JLSv3 §4.12.2.1 – Heap Pollution  
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See JLSv3 §4.12.2.1 – Heap Pollution  
 

 warning: [unchecked] unchecked generic array creation 
for varargs parameter of type List<String>[] 
      Arrays.asList(Arrays.asList("January", 
                   ^ 
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See JLSv3 §4.12.2.1 – Heap Pollution  
 

 warning: [unchecked] unchecked generic array creation 
for varargs parameter of type List<String>[] 
      Arrays.asList(Arrays.asList("January", 
                   ^ 

 
 

 

But nothing bad actual happens in this case, so the error is uninformative.  
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Reminder: @SafeVarargs from Project Coin 

• New annotation type java.lang.SafeVarargs and application to libs 

• Summary: no longer receive uninformative unchecked compiler warnings 
from calling platform library methods: 
• <T> List<T> Arrays.asList(T... a)  

• <T> boolean Collections.addAll(Collection<? super T> c,  
                               T... elements)  

• <E extends Enum<E>> EnumSet<E> EnumSet.of(E first, 
                                          E... rest)  

• void javax.swing.SwingWorker.publish(V... chunks) 

• Removes warnings from method call sites 

30 
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Annotation Properties 

• Annotations are only inherited on classes, not on interfaces or methods 

• Therefore, a @SafeVarargs annotation can only be used on methods that 
cannot be overridden: 
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Annotation Properties 

• Annotations are only inherited on classes, not on interfaces or methods 

• Therefore, a @SafeVarargs annotation can only be used on methods that 
cannot be overridden: 

• Constructors (from a certain point of view, special static methods) 
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Annotation Properties 

• Annotations are only inherited on classes, not on interfaces or methods 

• Therefore, a @SafeVarargs annotation can only be used on methods that 
cannot be overridden: 

• Constructors (from a certain point of view, special static methods) 

• static methods 
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Annotation Properties 

• Annotations are only inherited on classes, not on interfaces or methods 

• Therefore, a @SafeVarargs annotation can only be used on methods that 
cannot be overridden: 

• Constructors (from a certain point of view, special static methods) 

• static methods 

• final methods 
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Annotation Properties 

• Annotations are only inherited on classes, not on interfaces or methods 

• Therefore, a @SafeVarargs annotation can only be used on methods that 
cannot be overridden: 

• Constructors (from a certain point of view, special static methods) 

• static methods 

• final methods 

• private methods (omitted in JDK 7) 
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Language Specification updates 

• JLS §9.6.4.7. @SafeVarargs 
It is a compile-time error if a variable arity  
method declaration that is neither static nor final  
is annotated with the annotation @SafeVarargs.  
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Language Specification updates 

• JLS §9.6.4.7. @SafeVarargs 
It is a compile-time error if a variable arity  
method declaration that is neither static nor final  
is annotated with the annotation @SafeVarargs.  
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Effectively final variables & try-with-resources 

33 
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Refresher: try-with-resources 
You type this: 

try (Resource r = aa()) { 
    bb(r); 
} catch (Exception e) { 
    cc(); 
} finally { 
    dd(); 
} 
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Refresher: try-with-resources 
You type this: 

try (Resource r = aa()) { 
    bb(r); 
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    cc(); 
} finally { 
    dd(); 
} 

 

Compiler generates (approximately) this: 

try { 
    Resource r = null; 
    try { 
        r = aa(); 
        bb(r); 
    } finally { 
        if (r != null) 
            r.close(); 
    } 
} catch (Exception e) { 
    cc(); 
} finally { 
    dd(); 
} 

⇒ 
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Refresher: try-with-resources 
You type this: 

try (Resource r = aa()) { 
    bb(r); 
} catch (Exception e) { 
    cc(); 
} finally { 
    dd(); 
} 

 

Compiler generates (approximately) this: 

try { 
    Resource r = null; 
    try { 
        r = aa(); 
        bb(r); 
    } finally { 
        if (r != null) 
            r.close(); 
    } 
} catch (Exception e) { 
    cc(); 
} finally { 
    dd(); 
} 

It’s actually more complicated 
because of the way exceptions 
from close() are handled. 

⇒ 
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try ResourceSpecification 
  Block 
  

Full disclosure: try-with-resources actual desugaring 
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try ResourceSpecification 
  Block 
  

{ 
  final VariableModifiers_minus_final R #resource = Expression; 
  Throwable #primaryException = null; 
 
  try ResourceSpecificationtail 
    Block 
  catch (Throwable #t) { 
    #primaryException = t; 
    throw #t; 
  } finally { 
    if (#resource != null) { 
      if (#primaryException != null) { 
        try { 
          #resource.close(); 
        } catch(Throwable #suppressedException) { 
          #primaryException.addSuppressed(#suppressedException); 
        } 
      } else { 
        #resource.close(); 
      } 
    } 
  } 
} 
 

⇒ 

Full disclosure: try-with-resources actual desugaring 
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Structure of the resources to be managed 

• In Java SE 7, the resources to be managed by a try-with-resources 
statement must be fresh variables declared in the statement: 
try (Resource r = …)  

• The original proposal allowed general expressions that were 
AutoCloseable, but this was found to be problematic for a variety of 
reasons such as: 
Resource r = new Resource1(); // First resource object 
try (r) { 
  r = new Resource2();        // Second resource object 
} 
// Which object(s) have had their close method called? 

36 
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Refined proposal: reuse final or effectively final resources 

• Instead of general expressions, just allows variables that are either: 

• final or  

• effectively final  

   to be used as resources. 

• Effectively final variables are not explicitly declared as final, but could 
be and still have the program compile, see JLS §4.12.4. 

• Variables have an explicit type, avoiding the need for type inference. 
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Example 

Instead of 
final Resource r = new Resource(); 
try (Resource r2 = r) { 
  … 
}  

can just use 
final Resource r = new Resource(); 
try (r) { 
  … // Cannot mutate r 
} 

38 
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Grammar of the specification change, JLS §14.20.3 

Resource: 

 {VariableModifier} UnannType VariableDeclaratorId = Expression  
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Grammar of the specification change, JLS §14.20.3 

Resource: 

 {VariableModifier} UnannType VariableDeclaratorId = Expression  

 VariableAccess 

 

VariableAccess: 

 ExpressionName 

 FieldAccess 
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Core of the semantics of the specification change  

An operand to try-with-resources statement may be a VariableAccess 
expression, which is an expression name (6.5.6) or a field access expression 
(15.11). The name or expression must denote a final or effectively final 
variable of type AutoCloseable which is definitely assigned before the 
try-with-resources statement; otherwise, a compile-time error occurs. 

 

                                                                                       
                                                                             
                                                                          

40 
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Core of the semantics of the specification change  

An operand to try-with-resources statement may be a VariableAccess 
expression, which is an expression name (6.5.6) or a field access expression 
(15.11). The name or expression must denote a final or effectively final 
variable of type AutoCloseable which is definitely assigned before the 
try-with-resources statement; otherwise, a compile-time error occurs. 

 

(Besides a direct construct like a local variable or method parameter, a resource to 
be managed could be a final field in an object or a final static field of a 
nested class, including a construct like (new Foo()).finalResourceField). 
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Diamond with anonymous classes, redux 

41 
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Diamond and anonymous classes, review 

Object o; 
List<?> arg = ...; 
o = new Box<>(arg); 

public class Box<T> { 
   private T value; 
 
   public Box(T value) { 
      this.value = value; 
   } 
 
   T getValue() { 
      return value; 
   } 
} 
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Diamond and anonymous classes, review 

Object o; 
List<?> arg = ...; 
o = new Box<>(arg); 

public class Box<T> { 
   private T value; 
 
   public Box(T value) { 
      this.value = value; 
   } 
 
   T getValue() { 
      return value; 
   } 
} 

The compiler needs to infer the type to use for Box. 
The language is still statically typed even though it 
is not always explicitly typed. 
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Inside the compiler… 

Object o; 
List<?> arg = ...; 
o = new Box< >(arg); 
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Inside the compiler… 

Object o; 
List<?> arg = ...; 
o = new Box< List<capture of ?> >(arg); 
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Inside the compiler… 

Object o; 
List<?> arg = ...; 
o = new Box< 

Capture conversion; 
results in a non-denotable type 
(For details see JLS §5.1.10)  

List<capture of ?> >(arg); 

https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
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A Box can be subclassed, including anonymously 

Object o; 
List<?> arg = ...; 
o = new Box<List<capture of ?>>(arg){…}; List<capture of ?> 
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A Box can be subclassed, including anonymously 

Object o; 
List<?> arg = ...; 
o = new Box<List<capture of ?>>(arg){…}; List<capture of ?> 
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Class file expressed as lower-level source code 

Object o; 
List<?> arg = ...; 
o = new Box$1(arg); 
 

class Box$1 extends Box<List<capture of ?> >{…} 
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Class file expressed as lower-level source code 

Anonymous classes 
translate into a new  
class file with a full set 
of attributes.  

Object o; 
List<?> arg = ...; 
o = new Box$1(arg); 
 

class Box$1 extends Box<List<capture of ?> >{…} 
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Class file expressed as lower-level source code 

Anonymous classes 
translate into a new  
class file with a full set 
of attributes.  

Object o; 
List<?> arg = ...; 
o = new Box$1(arg); 
 

class Box$1 extends Box<List<capture of ?> >{…} 

 Type info needs to be stored in a 
Signature attribute (JVMS §4.7.9) 

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
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Language feature interactions over time 
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Language feature interactions over time 

Inner classes,  
JDK 1.1 
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Language feature interactions over time 

Inner classes,  
JDK 1.1 

Generics, 
JDK  5.0 
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Language feature interactions over time 

Inner classes,  
JDK 1.1 

Generics, 
JDK  5.0 

Diamond, 
JDK  7 
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Language feature interactions over time 

Inner classes,  
JDK 1.1 

Generics, 
JDK  5.0 

Diamond, 
JDK  7 “Today’s problems come  

from yesterday’s solutions.” 
–Brian Goetz via Peter Senge via … 
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Language feature interactions over time 

Inner classes,  
JDK 1.1 

Generics, 
JDK  5.0 

Diamond, 
JDK  7 “Today’s problems come  

from yesterday’s solutions.” 
–Brian Goetz via Peter Senge via … 

JDK 7 Result: 
Cannot use diamond with 
anonymous classes in any 
circumstances. 
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A forward-looking statement from the JSR 334 Expert Group 

“Internally, a Java compiler operates over a richer set of types than those 
that can be written down explicitly in a Java program. The compiler-internal 
types which cannot be written in a Java program are called non-denotable 
types. Non-denotable types can occur as the result of the inference used by 
diamond. Therefore, using diamond with anonymous inner classes is not 
supported since doing so in general would require extensions to the class 
file signature attribute to represent non-denotable types, a de facto JVM 
change. It is feasible that future platform versions could allow use of 
diamond when creating an anonymous inner class as long as the inferred 
type was denotable.” 

JSR 334 Proposed Final Draft, June 2011 

http://jcp.org/aboutJava/communityprocess/pfd/jsr334/index.html
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Java SE 9 allows use of diamond when 
creating an anonymous inner class as long as 
the inferred type is denotable. (JDK-8073593) 

48 

https://bugs.openjdk.java.net/browse/JDK-8073593
https://bugs.openjdk.java.net/browse/JDK-8073593
https://bugs.openjdk.java.net/browse/JDK-8073593
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Partial specification updates:  
JLS §15.9.3 Choosing the Constructor and its Arguments  

It is a compile-time error if the superclass or superinterface type of the 
anonymous class, T, or any subexpression of T, has one of the following forms:  

• A type variable (4.4) that was not declared as a type parameter (such as a type 
variable produced by capture conversion (5.1.10))  

• An intersection type (4.9)  

• A class or interface type, where the class or interface declaration is not 
accessible from the class or interface in which the expression appears.  

The term “subexpression” includes type arguments of parameterized types 
(4.5), bounds of wildcards (4.5.1), and element types of array types (10.1). It 
excludes bounds of type variables. 

49 
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Partial specification updates:  
JLS §15.9.5 Anonymous Class Declarations  

The superclass or superinterface type is given by the class instance creation expression 
(15.9.1); if this type is generic and its type arguments are elided using '<>', the type 
arguments are inferred while choosing a constructor (15.9.3). 
 
If the class instance creation expression elides the supertype's type arguments using '<>', 
then for all non-private methods declared in the class body, it is as if the method 
declaration is annotated with @Override (9.6.4.4). 
 
[Note:] When the diamond form is used, the inferred type arguments may not be as 
anticipated by the programmer. Consequently, the supertype of the anonymous class may 
not be as anticipated, and methods declared in the anonymous class may not override 
supertype methods as intended. Treating such methods as if annotated with @Override 
(if they are not actually annotated with @Override) helps avoid silently incorrect 
programs. 

50 
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Effectiveness 

• In JDK 7, diamond could eliminate explicit type arguments at ≈90% of 
constructor call sites 

• Diamond with anonymous classes should allow removal of a large fraction 
of the remaining 10%. 

• JDK code base updated to use this feature, hundreds of call sites (JDK-8078467) 

• Main beneficiaries were uses of java.security.PrivilegedAction 

51 

https://bugs.openjdk.java.net/browse/JDK-8078467
https://bugs.openjdk.java.net/browse/JDK-8078467
https://bugs.openjdk.java.net/browse/JDK-8078467
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An underscore is no longer an identifier name 
JDK-8061549: Disallow ‘—‘ as a one-character identifier 
 

52 

https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
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Starting in Java SE 8 

• Part of Project Lambda / JSR 335 

• Cannot use ‘_’ as an identifier for a lambda parameter;  
avoid confusion with “wunderbar” from other languages 

• If used elsewhere legal, but generates a warning; from javac: 
warning: '_' used as an identifier (use of '_' as an identifier might not be 
supported in releases after Java SE 8) 

• Only a single underscore as an identifier generates a warning, use as a separator 
inside a longer identifier is fine 

 

53 

Discussed in http://mail.openjdk.java.net/pipermail/lambda-dev/2013-July/010661.html 
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Future possibilities 

• Partial diamond: 
new Foo<String, _>(); 

• Partial witnesses: 
foo.<String, _>bar() 

• “Don’t care” parameter names, suppress “var not used” warnings 

• … 

54 

Claim back the name real estate 
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private interface methods 

55 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.   

Background: default methods 

• Starting in Java SE 8, as part of Project Lambda interfaces can have default 
methods. 

• Default methods are non-abstract and thus have a method body. 

• At the JVM level, interfaces could have private methods;  
helpful to implement lambdas, etc. 

• However, private interface methods were not valid in the source 
language. 

56 
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Now in Java SE 9... 

• As planned, now in Java SE 9 interfaces can have private methods in the 
source level too: 

• static methods 

• instance methods 

• Sample usage: helper methods to implement default methods 

57 

 JDK-8071453: Allow interface methods to be private 

https://bugs.openjdk.java.net/browse/JDK-8071453
https://bugs.openjdk.java.net/browse/JDK-8071453
https://bugs.openjdk.java.net/browse/JDK-8071453
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Deprecation and imports 
JEP 211: Elide Deprecation Warnings on Import Statements 
 

58 

http://openjdk.java.net/jeps/211
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Background: warnings, warnings, everywhere 
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Number of javac lint warnings in JDK 9 jdk repo today 

Oracle Confidential 60 
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Number of javac lint warnings in JDK 9 jdk repo today 

Oracle Confidential 60 

Covers all of the following: 

• Open code 

• Closed code 

• Platform-specific code 

• Generated code 

• -Xlint:all –Werror in 
the build 
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Number of javac lint warnings in JDK 9 jdk repo today 

Oracle Confidential 60 

Covers all of the following: 

• Open code 

• Closed code 

• Platform-specific code 

• Generated code 

• -Xlint:all –Werror in 
the build 

 

Warnings-free modules include: 

• java.base: packages 
java.lang, java.util, 
java.math, …. 

• java.desktop: packages 
java.awt, javax.swing, … 

• java.compiler: packages  
javax.lang.model, … 
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Number of javac lint warnings in JDK 9 jdk repo today 

Oracle Confidential 60 

Covers all of the following: 

• Open code 

• Closed code 

• Platform-specific code 

• Generated code 

• -Xlint:all –Werror in 
the build 

 

Warnings-free modules include: 

• java.base: packages 
java.lang, java.util, 
java.math, …. 

• java.desktop: packages 
java.awt, javax.swing, … 

• java.compiler: packages  
javax.lang.model, … 

  †corba, jaxp, jax-ws, not included 

 

 

† 
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Technical dividends of going warnings free 

• Did you declare a serialVersionUID in your exception type? 
(All exceptions are serializable; thanks RMI!) 

• Did you override equals and hashCode correctly? 
(Nuanced and accurate check.) 

• Is that fallthrough in a switch intentional? 
(Possible security issue; c.f. “goto fail; goto fail;”) 

• Is it really acceptable to have a new use of that deprecated item? 
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javac as the first-line static analysis tool 

https://blogs.oracle.com/darcy/entry/warnings_removal_advice
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Technical dividends of going warnings free 

• Did you declare a serialVersionUID in your exception type? 
(All exceptions are serializable; thanks RMI!) 

• Did you override equals and hashCode correctly? 
(Nuanced and accurate check.) 

• Is that fallthrough in a switch intentional? 
(Possible security issue; c.f. “goto fail; goto fail;”) 

• Is it really acceptable to have a new use of that deprecated item? 

• “Advice on removing javac lint warnings” 
https://blogs.oracle.com/darcy/entry/warnings_removal_advice 
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javac as the first-line static analysis tool 

https://blogs.oracle.com/darcy/entry/warnings_removal_advice
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Deprecation warnings 

• Several hundred deprecation warnings in the JDK 

• Generated by use of deprecated types, methods, constructors, fields 

• Mandated by JLS §9.6.4.6 @Deprecated 

• Can resolve warnings by: 
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Deprecation warnings 

• Several hundred deprecation warnings in the JDK 

• Generated by use of deprecated types, methods, constructors, fields 

• Mandated by JLS §9.6.4.6 @Deprecated 

• Can resolve warnings by: 

• Propagating @Deprecated to the use-sites too 
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Deprecation warnings 

• Several hundred deprecation warnings in the JDK 

• Generated by use of deprecated types, methods, constructors, fields 

• Mandated by JLS §9.6.4.6 @Deprecated 

• Can resolve warnings by: 

• Propagating @Deprecated to the use-sites too 

• Removing use of the deprecated element(s) 
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Deprecation warnings 

• Several hundred deprecation warnings in the JDK 

• Generated by use of deprecated types, methods, constructors, fields 

• Mandated by JLS §9.6.4.6 @Deprecated 

• Can resolve warnings by: 

• Propagating @Deprecated to the use-sites too 

• Removing use of the deprecated element(s) 

• @SuppressWarnings("deprecation") 

  

62 
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import p.DepLib; 

 

public class Client2 { 

  public static void  
  main(String… args) { 

      DepLib dl = new DepLib(); 

      dl.foo(); 

    } 

} 

                             
                            

// DepLib.java 

package p; 

@Deprecated 

public class DepLib { 

  public DepLib() {} 

  public void foo() {return;} 

} 

 

63 

A wrinkle in Java SE 5.0 through 8 
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import p.DepLib; 

 

public class Client2 { 

  public static void  
  main(String… args) { 

      DepLib dl = new DepLib(); 

      dl.foo(); 

    } 

} 

Note: Client2.java uses or 
overrides a deprecated API. 

  

// DepLib.java 

package p; 

@Deprecated 

public class DepLib { 

  public DepLib() {} 

  public void foo() {return;} 

} 
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import p.DepLib; 

                                  

public class Client2 { 

  public static void  
  main(String… args) { 

      DepLib dl = new DepLib(); 

      dl.foo(); 

    } 

} 

                             
                            

// DepLib.java 

package p; 

@Deprecated 

public class DepLib { 

  public DepLib() {} 

  public void foo() {return;} 

} 
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A wrinkle in Java SE 5.0 through 8 
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import p.DepLib; 

@SuppressWarnings("deprecation") 

public class Client2 { 

  public static void  
  main(String… args) { 

      DepLib dl = new DepLib(); 

      dl.foo(); 

    } 

} 

                             
                            

// DepLib.java 

package p; 

@Deprecated 

public class DepLib { 

  public DepLib() {} 

  public void foo() {return;} 

} 

 

64 

A wrinkle in Java SE 5.0 through 8 
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import p.DepLib; 

@SuppressWarnings("deprecation") 

public class Client2 { 

  public static void  
  main(String… args) { 

      DepLib dl = new DepLib(); 

      dl.foo(); 

    } 

} 

Note: Client2.java uses or 
overrides a deprecated API. 

  

// DepLib.java 

package p; 

@Deprecated 

public class DepLib { 

  public DepLib() {} 

  public void foo() {return;} 

} 
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A wrinkle in Java SE 5.0 through 8 
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Deprecation warning in detail 

Client2.java:1: warning: [deprecation] DepLib in p has 
been deprecated 
import p.DepLib; 
        ^ 
1 warning 

• Warning on import mandated by the JLS 

• Use of the type in this location cannot be annotated for suppression 

• Warning is unhelpful; if all other uses of the deprecated type can be 
suppressed, shouldn’t have to resort to using its fully qualified name 
everywhere to be warning-free. 

65 

With javac -Xlint:deprecation … 
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Specification update: JLS §9.6.3.6 @Deprecated 

A Java compiler must produce a deprecation warning when a type, method, field, 
or constructor whose declaration is annotated with the annotation @Deprecated 
is used (i.e. overridden, invoked, or referenced by name), unless:  

• The use is within an entity that is itself annotated with the annotation 
@Deprecated; or  

• The use is within an entity that is annotated to suppress the warning with the 
annotation @SuppressWarnings("deprecation"); or  

• The use and declaration are both within the same outermost class.  
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Specification update: JLS §9.6.3.6 @Deprecated 

A Java compiler must produce a deprecation warning when a type, method, field, 
or constructor whose declaration is annotated with the annotation @Deprecated 
is used (i.e. overridden, invoked, or referenced by name), unless:  

• The use is within an entity that is itself annotated with the annotation 
@Deprecated; or  

• The use is within an entity that is annotated to suppress the warning with the 
annotation @SuppressWarnings("deprecation"); or  

• The use and declaration are both within the same outermost class.  

• The use is within an import statement that imports the type or member whose 
declaration is annotated with @Deprecated. 
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; or 
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Result: now tractable to clear a code base of 
deprecation warnings. 
                                                                                  
                                                                                      
                

67 

https://twitter.com/DrDeprecator
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Result: now tractable to clear a code base of 
deprecation warnings. 
(If you’re interested in deprecation, see also Saving the Future from the Past: 
Innovations in Deprecation [CON6856], Wednesday, Oct 28, 3:00 p.m by Dr. Deprecator, 
@DrDeprecator.) 
  

67 

https://twitter.com/DrDeprecator
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Tiered Attribution 
Or why and how we re-engineered the compiler from inside out 
JEP 215: Tiered Attribution for javac 
 

http://openjdk.java.net/jeps/215
http://openjdk.java.net/jeps/215
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Type Attribution in the compiler pipeline 
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Type Attribution in the compiler pipeline 
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Type Attribution in action 

The main responsibility of type attribution is to assign a type to each 
element of a Java program. 
 
void foo(int i, int j, boolean b, boolean v) { 
    // Type attribution determines that the expression 'i + j' 
    // has type int. The same type is assigned to variable k 
    int k = i + j; 
    // In this case type attribution determines that the expression 'b && v' 
    // has type boolean 
    System.out.println(b && v); 
} 
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Java SE 8 introduced the concept of poly expressions 

• Expressions for which its type can be influenced by the target type 

• They can have different types in different contexts 

 

72 
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Not all expressions are created equal! 

116 

new ArrayList<>() 

100 

e.toString() 

{ 1, 2 } 

? 
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Standalone expressions 

117 

new ArrayList<>() 

100 

e.toString() 

{ 1, 2 } 

int 

String 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.   

Poly expressions 
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new ArrayList<>() 

100 

e.toString() 

{ 1, 2 } 

int 

String 
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Poly expressions 

119 

new ArrayList<>() 

100 

e.toString() 

{ 1, 2 } 

int 

String 

ArrayList<String> 

ArrayList<Integer> 
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Poly expressions 

120 

new ArrayList<>() 

100 

e.toString() 

{ 1, 2 } 

int 

String 

ArrayList<String> 

ArrayList<Integer> 

double[] 

int[] 
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Poly expressions 

• Lambda expressions 

• Method references 

• Generic method calls 

• Diamond instance creation expressions 

• Conditional poly expressions 

• Parenthesized poly expressions 

 

76 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.   

Poly expressions 

• Lambda expressions 

• Method references 

• Generic method calls 

• Diamond instance creation expressions 

• Conditional poly expressions 

• Parenthesized poly expressions 
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Type Inference 

It’s a compiler's ability to look at each method invocation and corresponding 
declaration to determine the type argument(s) that make the invocation 
applicable 
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Type inference is like linear programming 

Linear programming: 
subject to constraints, 
maximize: 
2x + y 
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Type inference is like linear programming 

y ≥ 1, 
y ≤ 5 

Linear programming: 
subject to constraints, 
maximize: 
2x + y 
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Type inference is like linear programming 

y ≥ 1, 
y ≤ 5 

x ≥ 2, x ≤ 6 

Linear programming: 
subject to constraints, 
maximize: 
2x + y 
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Type inference is like linear programming 

y ≥ 1, 
y ≤ 5 

x ≥ 2, x ≤ 6 

x + y ≤ 8 

Linear programming: 
subject to constraints, 
maximize: 
2x + y 
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Type inference is like linear programming 

y ≥ 1, 
y ≤ 5 

x ≥ 2, x ≤ 6 

x + y ≤ 8 

Linear programming: 
subject to constraints, 
maximize: 
2x + y 
 
 
Simplex method: 
One of the top-ten algorithms  
of the 20th century, often 
very fast solutions, but  
exponential in the worst case. 
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public static void main(String argv[]) { 
    // There are no type arguments in the right-hand side. 
    // How does javac figure out what the types are? 
    C<String> c1 = new C<>(); 
} 

Attribution + Inference in action 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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Attribution + Inference in action 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 

 
public static void main( 
    String args[]) { 
    C<String> c1 = new C<>(); 
} 

U <: Object 

From U's declaration: 
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Attribution + Inference in action 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 

 
public static void main( 
    String args[]) { 
    C<String> c1 = new C<>(); 
} 

U = String 

From the target type: 
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public static void main(String argv[]) { 
    // Summing up, for this invocation javac has discovered that: 
    //   U <: Object and 
    //   U = String,  
    // With this information the inference engine can figure out  
    // that the instantiation of U has only one solution: 
    //    U := String 
    C<String> c1 = new C<>(); 
} 

Attribution + Inference in action 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m0.353s 
public static void main(String argv[]) { 
    C<String> c2 = new C<>( 
                       new C<>()); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m0.364s 
public static void main(String argv[]) { 
    C<String> c3 = new C<>( 
                       new C<>( 
                           new C<>())); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m0.436s 
public static void main(String argv[]) { 
    C<String> c4 = new C<>( 
                       new C<>( 
                           new C<>( 
                               new C<>()))); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m0.510s 
public static void main(String argv[]) { 
    C<String> c5 = new C<>( 
                       new C<>( 
                           new C<>( 
                               new C<>( 
                                   new C<>())))); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m0.645s 
public static void main(String argv[]) { 
    C<String> c6 = new C<>( 
                       new C<>( 
                           new C<>( 
                               new C<>( 
                                   new C<>( 
                                       new C<>()))))); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m0.899s 
public static void main(String argv[]) { 
    C<String> c7 = new C<>( 
                       new C<>( 
                           new C<>( 
                               new C<>( 
                                   new C<>( 
                                       new C<>( 
                                           new C<>())))))); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m1.448s 
public static void main(String argv[]) { 
    C<String> c8 = new C<>( 
                       new C<>( 
                           new C<>( 
                               new C<>( 
                                   new C<>( 
                                       new C<>( 
                                           new C<>( 
                                               new C<>()))))))); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 25m20.590s 
public static void main(String argv[]) { 
    C<String> c16 = new C<>( 
                       new C<>( 
                           new C<>( 
                               new C<>( 
                                            ... 
                                                     new C<>( 
                                                         new C<>( 
                                                             new C<>()))))))))))))))); 
} 

But once we complicate it... 
class C<U> { 
    U foo; 
    C() {} 
    C(C<U> o) { foo = o.foo; } 
    C(U foo) { this.foo = foo;} 
} 
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// compilation time: 0m49.278s 
void foo() { 
        m(null, () ->  
            m(null, () ->  
                m(null, () ->  
                    m(null, () ->  
                        m(null, () ->  
                            m(null, () ->  
                                m(null, () ->  
                                    m(null, () ->  
                                        m(null, (Callable<String>)null))))))))); 
} 

Also for lambdas... 
class Klass { 
    static class A0 { } 
    static class A1 { } 
    static class A2 { } 
    <Z extends A0> Z m(A0 t, 
        Callable<Z> ct) { return null; } 
    <Z extends A1> Z m(A1 t,  
        Callable<Z> ct) { return null; } 
    <Z extends A2> Z m(A2 t,      
        Callable<Z> ct) { return null; } 
    <Z> Z m(Object o,  
        Callable<Z> co) { return null; } 
} 
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Compiler performance, linear scale 
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Compiler performance, log scale 
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Exponential explosion 

• Poly expressions are type checked several times against multiple target 
types. The same applies for nested expressions, like arguments 

• Type inference got more complex and slower 

• We can say that the Java 8 compiler is trying to solve a problem as complex 
as finding cheap tickets during Thanksgiving days :) 
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Exponential explosion, mitigating factors 

• Occurs in limited settings:  typically generated code from tools, IDEs, etc. 
Mainly for deeply nested calls which are generally not a recommended 
coding pattern. 

• Very hard to find in user-written code 

• No noticeable slowdown has been detected while compiling 
big projects like JDK 

• There are alternatives to improve the performance if needed, such as 
adding explicit type arguments 
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Tiered attribution goals 

• Re-engineer the compiler in order to add performance robustness and 
avoid exponential slowdowns 

• Improve compiler performance by reducing the number of passes needed 
to attribute a given expression 

• Produce same binary results as the previous implementation 
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Main ideas behind Tiered Attribution 

• Gather structural information about an expression 

• Use that information during overload resolution to discriminate overloads 

• Attribute every expression only once 
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Computing Fibonacci Numbers 
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Compiler performance with tiered attribution 
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Compiler performance with tiered attribution, cont. 
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Compiler performance with tiered attribution, cont. 
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Tiered Attribution results 

• Performance improvement, worst case dramatically improved 

• Compatibility with existing attribution approach 

• Opened the door to more optimizations and improvements 
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Summary 
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JDK 9 Language and Tooling features 

• Fundamental development changes coming with modularity 

• Smaller improvements coming in other areas: 

• Finish long-anticipated polishing of Project Coin,  
Project Lambda, and other language enhancements 

• Increased developer convenience; more informative warnings 

• More robust compiler performance 

• Can follow developments in OpenJDK 

• EA builds of JDK 9 available today for your evaluation 
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  Q & A 
Slides: https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf 

  

         JDK 9 EA builds: https://jdk9.java.net/ 
JDK 9 EA builds with Jigsaw: https://jdk9.java.net/jigsaw/  
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