
Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JDK 9 Language and Tooling Features

Joseph D. Darcy (@jddarcy)
Vicente A. Romero
Java Platform Group, Oracle
October 2015

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Survey: Which JDK train are you using in production?

3

• JDK 9 EA with Jigsaw

• JDK 9 EA

• JDK 8

• JDK 7

• JDK 6

• JDK 5.0

• JDK 1.4.2 or earlier

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JDK 9
Overview

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JDK 9 Information

• Current schedule: GA September 22, 2016

• Early access binaries + docs, updated weekly: https://jdk9.java.net/

• Early access binaries with Jigsaw: https://jdk9.java.net/jigsaw/

• OpenJDK :

• Project: http://openjdk.java.net/projects/jdk9/

• Mailing list: http://mail.openjdk.java.net/mailman/listinfo/jdk9-dev

• Source code: http://hg.openjdk.java.net/jdk9/dev/

• Adoption: http://mail.openjdk.java.net/pipermail/adoption-discuss/

• JEPs (JDK Enhancement Proposals) used for project tracking

5

https://jdk9.java.net/
https://jdk9.java.net/jigsaw/
http://openjdk.java.net/projects/jdk9/
http://mail.openjdk.java.net/mailman/listinfo/jdk9-dev
http://mail.openjdk.java.net/mailman/listinfo/jdk9-dev
http://mail.openjdk.java.net/mailman/listinfo/jdk9-dev
http://hg.openjdk.java.net/jdk9/dev/
http://mail.openjdk.java.net/pipermail/adoption-discuss/
http://mail.openjdk.java.net/pipermail/adoption-discuss/
http://mail.openjdk.java.net/pipermail/adoption-discuss/
http://openjdk.java.net/jeps/0

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Capsule summary of modularity language impact in JDK 9

• Modules bundle together one or more packages and offer stronger
encapsulation than jars

• module-info.java files to declare dependencies between modules

• Changes to javac command line to find types in modules as well as in jars

• For (much) more information see sessions:
• Introduction to Modular Development [CON5118], Wednesday, Oct 28, 1:00 pm

• Advanced Modular Development [CON6821], Thursday, Oct 29, 2:30 pm

• Prepare for JDK 9 [CON5107], Monday

• Project Jigsaw: Under the Hood [CON6823], Monday

7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Outline

• User-facing features

• jshell

• JavaDoc.Next

• Cross compiling and the javac -release flag

• Milling Project Coin (five tiny language improvements)

• Deprecation and imports

• Reengineering javac
• Tiered Attribution

• Q & A

8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

jshell
JEP 222: jshell: The Java Shell (Read-Eval-Print Loop)

9

http://openjdk.java.net/jeps/222
http://openjdk.java.net/jeps/222
http://openjdk.java.net/jeps/222
http://openjdk.java.net/jeps/222
http://openjdk.java.net/jeps/222
http://openjdk.java.net/jeps/222
http://openjdk.java.net/jeps/222

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

A historical perspective

• Lisp systems decades back provided a read-evaluate-print-loop (REPL) to
interact with the language

• Similar functionality is found in Ruby and Python as well as Scala, Groovy,
and Clojure

• What about Java?

10

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

jshell – new command in $JDK/bin in JDK 9

• Less ceremony for students learning Java

• Less formal way for experienced developers to

• Explore using a new API

• Experiment with new language features

• Leverages many existing JDK technologies

• Dedicated session: jshell: The New Interactive Java Language Shell for JDK 9
[CON7823], Wednesday, Oct 28, 8:30 a.m.

Teaser DEMO

11

Project Kulla: http://openjdk.java.net/projects/kulla/

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JavaDoc.Next
http://openjdk.java.net/projects/javadoc-next/

12

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

HTML 5

• The javadoc tool has historically generated HTML 4.01 output

• HTML 5 is a new HTML standard, finalized October 2014

• Richer semantic structure

• New attributes defined

• Use
 javadoc -html5 …
to opt-into the new output

• (Still uses frames-style layout)

13

JEP 224: HTML5 Javadoc

H
TM

L
5

 lo
go

 f
ro

m
 w

w
w

.w
3

.o
rg

/h
tm

l/
lo

go
/i

n
d

ex
.h

tm
l

http://openjdk.java.net/jeps/224
http://openjdk.java.net/jeps/224

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Doclint and package filtering

• Doclint, added in JDK 8, performs various structural and semantics checks
on javadoc tags in various categories:

• Accessibility: conditions that may be flagged by an accessibility checker, such as
obsolete attributes or headers out of sequence

• HTML: HTML conformance issues (vary with DOCTYPE), e.g. anchor already defined,
bad start-end tag matching

• Missing: missing comment or missing tag within a comment (e.g. not all parameters
have a @param tag)

• Reference: the target of an @see, @link, @throws, etc. is invalid

• Syntax: malformed HTML in comments

14

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Configuring doclint

• Doclint checks can be run as part of javadoc or as part of javac;
(both used in JDK build)

• HTML checks are appropriate for chosen version of HTML output

• Checks can be limited to chosen language accessibility (public, protected, …)

• Checks can be enabled / disabled per category

• Example, for public and protected types, do all checks except for reference:
-Xdoclint:all/protected,-reference

• Checks can be limited to selected packages (new in JDK 9):

• To check java.* and javax.*: '-Xdoclint/package:java.*,javax.*'

• To exclude example.com: '-Xdoclint/package:-example.com.*'

15

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Simplified Doclet API

• Doclets are plugins to javadoc; standard doclet most commonly used

• Doclet APIs

• Don’t follow current best-practices for API design

• Uses an inaccurate and hard to evolve language model

• Replace old Doclet APIs with newer APIs with better functionality

• Use javax.lang.model API for language model

• Use DocTree API (com.sun.source.doctree)

• Simpler and more compact

16

JEP 221: Simplified Doclet API

http://openjdk.java.net/jeps/221
http://openjdk.java.net/jeps/221
http://openjdk.java.net/jeps/221
http://openjdk.java.net/jeps/221

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

javadoc search: coming soon to a future JDK 9 build…

• By default javadoc output will have a search box
• Client-side implementation in JavaScript

• Indexes package names, type names, member names

• New tag to add other index items

DEMO

17

JEP 225: Javadoc Search

http://openjdk.java.net/jeps/225
http://openjdk.java.net/jeps/225
http://openjdk.java.net/jeps/225
http://openjdk.java.net/jeps/225

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cross-compiling and the –release flag

18

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cross-compiling to older releases

19

https://blogs.oracle.com/darcy/entry/how_to_cross_compile_for

• To use javac to compile to older release N,
must set

• -source N

• -target N

• -bootclasspath jdkN/lib/rt.jar

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Policy on older releases: 1 + 3 back

• Started implementing in JDK 8

• In JDK 9, -source/-target supported values:

• 9 (the default)

• 8

• 7

• 6 (deprecated, warning issued when used)

20

JEP 182: Policy for Retiring javac -source and -target Options

http://openjdk.java.net/jeps/182
http://openjdk.java.net/jeps/182
http://openjdk.java.net/jeps/182
http://openjdk.java.net/jeps/182
http://openjdk.java.net/jeps/182
http://openjdk.java.net/jeps/182
http://openjdk.java.net/jeps/182

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21

Why the bootclasspath needs to be set

// JDK N
public class Library {
 public void foo(double d) {…}
}

// JDK N+1
public class Library {
 public void foo(double d) {…}
 public void foo(int i) {…}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21

Why the bootclasspath needs to be set

// JDK N
public class Library {
 public void foo(double d) {…}
}

// JDK N+1
public class Library {
 public void foo(double d) {…}
 public void foo(int i) {…}
}

public class Client {
 public static void main(String… args) {
 (new Library()).foo(1234);
 }
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21

Why the bootclasspath needs to be set

// JDK N
public class Library {
 public void foo(double d) {…}
}

// JDK N+1
public class Library {
 public void foo(double d) {…}
 public void foo(int i) {…}
}

public class Client {
 public static void main(String… args) {
 (new Library()).foo(1234);
 }
}

If Client is compiled against JDK N+1 but
run against JDK N:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21

Why the bootclasspath needs to be set

// JDK N
public class Library {
 public void foo(double d) {…}
}

// JDK N+1
public class Library {
 public void foo(double d) {…}
 public void foo(int i) {…}
}

public class Client {
 public static void main(String… args) {
 (new Library()).foo(1234);
 }
}

If Client is compiled against JDK N+1 but
run against JDK N:
Exception in thread "main"
java.lang.NoSuchMethodError: Library.foo(I)V
 at Client.main(Client.java:3)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

An explicit warning as of JDK 7

• javac –cp … -source 6 -target 6 Client.java
warning: [options] bootstrap class path not
set in conjunction with -source 1.6

• The warning can be suppressed with
 -Xlint:-options

22

https://blogs.oracle.com/darcy/entry/bootclasspath_older_source

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

An explicit warning as of JDK 7

• javac –cp … -source 6 -target 6 Client.java
warning: [options] bootstrap class path not
set in conjunction with -source 1.6

• The warning can be suppressed with
 -Xlint:-options

• But despite the warning, bugs still came in…

22

https://blogs.oracle.com/darcy/entry/bootclasspath_older_source

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JDK 9’s do-what-I-want approach: -release N

• javac -release N …
is equivalent to
javac -source N -target N –bootclasspath rtN.jar…

• Information about APIs of earlier releases available to javac
• Stored in a compressed fashion

• Only provide Java SE N and JDK N-exported APIs that are platform neutral

• Same set of release values N as for -source / -target

• Incompatible combinations of options rejected

23

JEP 247: Compile for Older Platform Versions

http://openjdk.java.net/jeps/247

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Advantages of -release N

• No user need to manage artifacts storing old API information

• Should remove need to use tools like Animal Sniffer

• May use newer compilation idioms than the javac in older releases
• Bug fixes

• Speed improvements

24

http://www.mojohaus.org/animal-sniffer/

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 25

http://openjdk.java.net/jeps/213

Milling Project Coin in JDK 9

P
h

o
to

 c
o

p
yr

ig
h

t
2

0
1

1
 J

o
se

p
h

 D
. D

ar
cy

. A
ll

ri
gh

ts
 r

es
er

ve
d

.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Project Coin features in JDK 7

• Binary literals and underscores in literals

• Strings in switch

• Diamond

• Multi-catch and more precise rethrow

• try-with-resources

• Varargs warnings

26

Standardized under JSR 334

https://jcp.org/en/jsr/detail?id=334

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Project Coin features in JDK 7

• Binary literals and underscores in literals

• Strings in switch

• Diamond

• Multi-catch and more precise rethrow

• try-with-resources

• Varargs warnings

26

Standardized under JSR 334

https://jcp.org/en/jsr/detail?id=334

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

A few small amendments in JDK 9

• Allow @SafeVargs on private instance methods.

• Allow effectively-final variables to be used as resources
in the try-with-resources statement.

• Allow diamond with anonymous classes if all
type arguments of the inferred types are denotable.

• Complete the removal, begun in Java SE 8,
of underscore from the set of legal identifier names.

• Source-level private interface methods.

27

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

A few small amendments in JDK 9

• Allow @SafeVargs on private instance methods.

• Allow effectively-final variables to be used as resources
in the try-with-resources statement.

• Allow diamond with anonymous classes if all
type arguments of the inferred types are denotable.

• Complete the removal, begun in Java SE 8,
of underscore from the set of legal identifier names.

• Source-level private interface methods.

27

Project Lambda
amendments

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

@SafeVarargs on private instance methods

28

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Example from JDK 5.0 and 6

 List<List<String>> monthsInTwoLanguages =

 Arrays.asList(Arrays.asList("January", "February"),

 Arrays.asList("Gennaio", "Febbraio"));

29

See JLSv3 §4.12.2.1 – Heap Pollution

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Example from JDK 5.0 and 6

 List<List<String>> monthsInTwoLanguages =

 Arrays.asList(Arrays.asList("January", "February"),

 Arrays.asList("Gennaio", "Febbraio"));

29

See JLSv3 §4.12.2.1 – Heap Pollution

 warning: [unchecked] unchecked generic array creation
for varargs parameter of type List<String>[]
 Arrays.asList(Arrays.asList("January",
 ^

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Example from JDK 5.0 and 6

 List<List<String>> monthsInTwoLanguages =

 Arrays.asList(Arrays.asList("January", "February"),

 Arrays.asList("Gennaio", "Febbraio"));

29

See JLSv3 §4.12.2.1 – Heap Pollution

 warning: [unchecked] unchecked generic array creation
for varargs parameter of type List<String>[]
 Arrays.asList(Arrays.asList("January",
 ^

But nothing bad actual happens in this case, so the error is uninformative.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Reminder: @SafeVarargs from Project Coin

• New annotation type java.lang.SafeVarargs and application to libs

• Summary: no longer receive uninformative unchecked compiler warnings
from calling platform library methods:
• <T> List<T> Arrays.asList(T... a)

• <T> boolean Collections.addAll(Collection<? super T> c,
 T... elements)

• <E extends Enum<E>> EnumSet<E> EnumSet.of(E first,
 E... rest)

• void javax.swing.SwingWorker.publish(V... chunks)

• Removes warnings from method call sites

30

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Annotation Properties

• Annotations are only inherited on classes, not on interfaces or methods

• Therefore, a @SafeVarargs annotation can only be used on methods that
cannot be overridden:

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Annotation Properties

• Annotations are only inherited on classes, not on interfaces or methods

• Therefore, a @SafeVarargs annotation can only be used on methods that
cannot be overridden:

• Constructors (from a certain point of view, special static methods)

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Annotation Properties

• Annotations are only inherited on classes, not on interfaces or methods

• Therefore, a @SafeVarargs annotation can only be used on methods that
cannot be overridden:

• Constructors (from a certain point of view, special static methods)

• static methods

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Annotation Properties

• Annotations are only inherited on classes, not on interfaces or methods

• Therefore, a @SafeVarargs annotation can only be used on methods that
cannot be overridden:

• Constructors (from a certain point of view, special static methods)

• static methods

• final methods

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Annotation Properties

• Annotations are only inherited on classes, not on interfaces or methods

• Therefore, a @SafeVarargs annotation can only be used on methods that
cannot be overridden:

• Constructors (from a certain point of view, special static methods)

• static methods

• final methods

• private methods (omitted in JDK 7)

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language Specification updates

• JLS §9.6.4.7. @SafeVarargs
It is a compile-time error if a variable arity
method declaration that is neither static nor final
is annotated with the annotation @SafeVarargs.

32

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language Specification updates

• JLS §9.6.4.7. @SafeVarargs
It is a compile-time error if a variable arity
method declaration that is neither static nor final
is annotated with the annotation @SafeVarargs.

32

nor private

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Effectively final variables & try-with-resources

33

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Refresher: try-with-resources
You type this:

try (Resource r = aa()) {
 bb(r);
} catch (Exception e) {
 cc();
} finally {
 dd();
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Refresher: try-with-resources
You type this:

try (Resource r = aa()) {
 bb(r);
} catch (Exception e) {
 cc();
} finally {
 dd();
}

Compiler generates (approximately) this:

try {
 Resource r = null;
 try {
 r = aa();
 bb(r);
 } finally {
 if (r != null)
 r.close();
 }
} catch (Exception e) {
 cc();
} finally {
 dd();
}

⇒

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Refresher: try-with-resources
You type this:

try (Resource r = aa()) {
 bb(r);
} catch (Exception e) {
 cc();
} finally {
 dd();
}

Compiler generates (approximately) this:

try {
 Resource r = null;
 try {
 r = aa();
 bb(r);
 } finally {
 if (r != null)
 r.close();
 }
} catch (Exception e) {
 cc();
} finally {
 dd();
}

It’s actually more complicated
because of the way exceptions
from close() are handled.

⇒

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

try ResourceSpecification
 Block

Full disclosure: try-with-resources actual desugaring

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

try ResourceSpecification
 Block

{
 final VariableModifiers_minus_final R #resource = Expression;
 Throwable #primaryException = null;

 try ResourceSpecificationtail
 Block
 catch (Throwable #t) {
 #primaryException = t;
 throw #t;
 } finally {
 if (#resource != null) {
 if (#primaryException != null) {
 try {
 #resource.close();
 } catch(Throwable #suppressedException) {
 #primaryException.addSuppressed(#suppressedException);
 }
 } else {
 #resource.close();
 }
 }
 }
}

⇒

Full disclosure: try-with-resources actual desugaring

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Structure of the resources to be managed

• In Java SE 7, the resources to be managed by a try-with-resources
statement must be fresh variables declared in the statement:
try (Resource r = …)

• The original proposal allowed general expressions that were
AutoCloseable, but this was found to be problematic for a variety of
reasons such as:
Resource r = new Resource1(); // First resource object
try (r) {
 r = new Resource2(); // Second resource object
}
// Which object(s) have had their close method called?

36

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Refined proposal: reuse final or effectively final resources

• Instead of general expressions, just allows variables that are either:

• final or

• effectively final

 to be used as resources.

• Effectively final variables are not explicitly declared as final, but could
be and still have the program compile, see JLS §4.12.4.

• Variables have an explicit type, avoiding the need for type inference.

37

https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Example

Instead of
final Resource r = new Resource();
try (Resource r2 = r) {
 …
}

can just use
final Resource r = new Resource();
try (r) {
 … // Cannot mutate r
}

38

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Grammar of the specification change, JLS §14.20.3

Resource:

 {VariableModifier} UnannType VariableDeclaratorId = Expression

39

https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Grammar of the specification change, JLS §14.20.3

Resource:

 {VariableModifier} UnannType VariableDeclaratorId = Expression

 VariableAccess

VariableAccess:

 ExpressionName

 FieldAccess

39

https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Core of the semantics of the specification change

An operand to try-with-resources statement may be a VariableAccess
expression, which is an expression name (6.5.6) or a field access expression
(15.11). The name or expression must denote a final or effectively final
variable of type AutoCloseable which is definitely assigned before the
try-with-resources statement; otherwise, a compile-time error occurs.

40

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Core of the semantics of the specification change

An operand to try-with-resources statement may be a VariableAccess
expression, which is an expression name (6.5.6) or a field access expression
(15.11). The name or expression must denote a final or effectively final
variable of type AutoCloseable which is definitely assigned before the
try-with-resources statement; otherwise, a compile-time error occurs.

(Besides a direct construct like a local variable or method parameter, a resource to
be managed could be a final field in an object or a final static field of a
nested class, including a construct like (new Foo()).finalResourceField).

40

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Diamond with anonymous classes, redux

41

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Diamond and anonymous classes, review

Object o;
List<?> arg = ...;
o = new Box<>(arg);

public class Box<T> {
 private T value;

 public Box(T value) {
 this.value = value;
 }

 T getValue() {
 return value;
 }
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Diamond and anonymous classes, review

Object o;
List<?> arg = ...;
o = new Box<>(arg);

public class Box<T> {
 private T value;

 public Box(T value) {
 this.value = value;
 }

 T getValue() {
 return value;
 }
}

The compiler needs to infer the type to use for Box.
The language is still statically typed even though it
is not always explicitly typed.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Inside the compiler…

Object o;
List<?> arg = ...;
o = new Box< >(arg);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Inside the compiler…

Object o;
List<?> arg = ...;
o = new Box< List<capture of ?> >(arg);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Inside the compiler…

Object o;
List<?> arg = ...;
o = new Box<

Capture conversion;
results in a non-denotable type
(For details see JLS §5.1.10)

List<capture of ?> >(arg);

https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

A Box can be subclassed, including anonymously

Object o;
List<?> arg = ...;
o = new Box<List<capture of ?>>(arg){…}; List<capture of ?>

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

A Box can be subclassed, including anonymously

Object o;
List<?> arg = ...;
o = new Box<List<capture of ?>>(arg){…}; List<capture of ?>

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Class file expressed as lower-level source code

Object o;
List<?> arg = ...;
o = new Box$1(arg);

class Box$1 extends Box<List<capture of ?> >{…}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Class file expressed as lower-level source code

Anonymous classes
translate into a new
class file with a full set
of attributes.

Object o;
List<?> arg = ...;
o = new Box$1(arg);

class Box$1 extends Box<List<capture of ?> >{…}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Class file expressed as lower-level source code

Anonymous classes
translate into a new
class file with a full set
of attributes.

Object o;
List<?> arg = ...;
o = new Box$1(arg);

class Box$1 extends Box<List<capture of ?> >{…}

 Type info needs to be stored in a
Signature attribute (JVMS §4.7.9)

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language feature interactions over time

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language feature interactions over time

Inner classes,
JDK 1.1

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language feature interactions over time

Inner classes,
JDK 1.1

Generics,
JDK 5.0

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language feature interactions over time

Inner classes,
JDK 1.1

Generics,
JDK 5.0

Diamond,
JDK 7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language feature interactions over time

Inner classes,
JDK 1.1

Generics,
JDK 5.0

Diamond,
JDK 7 “Today’s problems come

from yesterday’s solutions.”
–Brian Goetz via Peter Senge via …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Language feature interactions over time

Inner classes,
JDK 1.1

Generics,
JDK 5.0

Diamond,
JDK 7 “Today’s problems come

from yesterday’s solutions.”
–Brian Goetz via Peter Senge via …

JDK 7 Result:
Cannot use diamond with
anonymous classes in any
circumstances.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

A forward-looking statement from the JSR 334 Expert Group

“Internally, a Java compiler operates over a richer set of types than those
that can be written down explicitly in a Java program. The compiler-internal
types which cannot be written in a Java program are called non-denotable
types. Non-denotable types can occur as the result of the inference used by
diamond. Therefore, using diamond with anonymous inner classes is not
supported since doing so in general would require extensions to the class
file signature attribute to represent non-denotable types, a de facto JVM
change. It is feasible that future platform versions could allow use of
diamond when creating an anonymous inner class as long as the inferred
type was denotable.”

JSR 334 Proposed Final Draft, June 2011

http://jcp.org/aboutJava/communityprocess/pfd/jsr334/index.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Java SE 9 allows use of diamond when
creating an anonymous inner class as long as
the inferred type is denotable. (JDK-8073593)

48

https://bugs.openjdk.java.net/browse/JDK-8073593
https://bugs.openjdk.java.net/browse/JDK-8073593
https://bugs.openjdk.java.net/browse/JDK-8073593

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Partial specification updates:
JLS §15.9.3 Choosing the Constructor and its Arguments

It is a compile-time error if the superclass or superinterface type of the
anonymous class, T, or any subexpression of T, has one of the following forms:

• A type variable (4.4) that was not declared as a type parameter (such as a type
variable produced by capture conversion (5.1.10))

• An intersection type (4.9)

• A class or interface type, where the class or interface declaration is not
accessible from the class or interface in which the expression appears.

The term “subexpression” includes type arguments of parameterized types
(4.5), bounds of wildcards (4.5.1), and element types of array types (10.1). It
excludes bounds of type variables.

49

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Partial specification updates:
JLS §15.9.5 Anonymous Class Declarations

The superclass or superinterface type is given by the class instance creation expression
(15.9.1); if this type is generic and its type arguments are elided using '<>', the type
arguments are inferred while choosing a constructor (15.9.3).

If the class instance creation expression elides the supertype's type arguments using '<>',
then for all non-private methods declared in the class body, it is as if the method
declaration is annotated with @Override (9.6.4.4).

[Note:] When the diamond form is used, the inferred type arguments may not be as
anticipated by the programmer. Consequently, the supertype of the anonymous class may
not be as anticipated, and methods declared in the anonymous class may not override
supertype methods as intended. Treating such methods as if annotated with @Override
(if they are not actually annotated with @Override) helps avoid silently incorrect
programs.

50

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Effectiveness

• In JDK 7, diamond could eliminate explicit type arguments at ≈90% of
constructor call sites

• Diamond with anonymous classes should allow removal of a large fraction
of the remaining 10%.

• JDK code base updated to use this feature, hundreds of call sites (JDK-8078467)

• Main beneficiaries were uses of java.security.PrivilegedAction

51

https://bugs.openjdk.java.net/browse/JDK-8078467
https://bugs.openjdk.java.net/browse/JDK-8078467
https://bugs.openjdk.java.net/browse/JDK-8078467

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

An underscore is no longer an identifier name
JDK-8061549: Disallow ‘—‘ as a one-character identifier

52

https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549
https://bugs.openjdk.java.net/browse/JDK-8061549

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Starting in Java SE 8

• Part of Project Lambda / JSR 335

• Cannot use ‘_’ as an identifier for a lambda parameter;
avoid confusion with “wunderbar” from other languages

• If used elsewhere legal, but generates a warning; from javac:
warning: '_' used as an identifier (use of '_' as an identifier might not be
supported in releases after Java SE 8)

• Only a single underscore as an identifier generates a warning, use as a separator
inside a longer identifier is fine

53

Discussed in http://mail.openjdk.java.net/pipermail/lambda-dev/2013-July/010661.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Future possibilities

• Partial diamond:
new Foo<String, _>();

• Partial witnesses:
foo.<String, _>bar()

• “Don’t care” parameter names, suppress “var not used” warnings

• …

54

Claim back the name real estate

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

private interface methods

55

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Background: default methods

• Starting in Java SE 8, as part of Project Lambda interfaces can have default
methods.

• Default methods are non-abstract and thus have a method body.

• At the JVM level, interfaces could have private methods;
helpful to implement lambdas, etc.

• However, private interface methods were not valid in the source
language.

56

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Now in Java SE 9...

• As planned, now in Java SE 9 interfaces can have private methods in the
source level too:

• static methods

• instance methods

• Sample usage: helper methods to implement default methods

57

 JDK-8071453: Allow interface methods to be private

https://bugs.openjdk.java.net/browse/JDK-8071453
https://bugs.openjdk.java.net/browse/JDK-8071453
https://bugs.openjdk.java.net/browse/JDK-8071453

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Deprecation and imports
JEP 211: Elide Deprecation Warnings on Import Statements

58

http://openjdk.java.net/jeps/211

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Oracle Confidential 59

Background: warnings, warnings, everywhere

0

2000

4000

6000

8000

10000

12000

8
-b

0
1

8
-b

0
5

8
-b

0
9

8
-b

1
3

8
-b

1
7

8
-b

2
1

8
-b

2
5

8
-b

2
9

8
-b

3
3

8
-b

3
7

8
-b

4
1

8
-b

4
5

8
-b

4
9

8
-b

5
3

8
-b

5
7

8
-b

6
1

8
-b

6
5

8
-b

6
9

8
-b

7
3

8
-b

7
7

8
-b

8
1

8
-b

8
5

8
-b

8
9

8
-b

9
3

8
-b

9
7

8
-b

1
0

1

8
-b

1
0

5

8
-b

1
0

9

8
-b

1
1

3

8
-b

1
1

7

8
-b

1
2

1

8
-b

1
2

5

8
-b

1
2

9

9
-b

0
1

9
-b

0
5

default

static

cast

serial

unchecke

raw

deprecat

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Oracle Confidential 59

Background: warnings, warnings, everywhere

0

2000

4000

6000

8000

10000

12000

8
-b

0
1

8
-b

0
5

8
-b

0
9

8
-b

1
3

8
-b

1
7

8
-b

2
1

8
-b

2
5

8
-b

2
9

8
-b

3
3

8
-b

3
7

8
-b

4
1

8
-b

4
5

8
-b

4
9

8
-b

5
3

8
-b

5
7

8
-b

6
1

8
-b

6
5

8
-b

6
9

8
-b

7
3

8
-b

7
7

8
-b

8
1

8
-b

8
5

8
-b

8
9

8
-b

9
3

8
-b

9
7

8
-b

1
0

1

8
-b

1
0

5

8
-b

1
0

9

8
-b

1
1

3

8
-b

1
1

7

8
-b

1
2

1

8
-b

1
2

5

8
-b

1
2

9

9
-b

0
1

9
-b

0
5

default

static

cast

serial

unchecke

raw

deprecat

Lint warnings
“fix-it” day Warnings

Clean up day

A productive
summer intern

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Oracle Confidential 59

Background: warnings, warnings, everywhere

0

2000

4000

6000

8000

10000

12000

8
-b

0
1

8
-b

0
5

8
-b

0
9

8
-b

1
3

8
-b

1
7

8
-b

2
1

8
-b

2
5

8
-b

2
9

8
-b

3
3

8
-b

3
7

8
-b

4
1

8
-b

4
5

8
-b

4
9

8
-b

5
3

8
-b

5
7

8
-b

6
1

8
-b

6
5

8
-b

6
9

8
-b

7
3

8
-b

7
7

8
-b

8
1

8
-b

8
5

8
-b

8
9

8
-b

9
3

8
-b

9
7

8
-b

1
0

1

8
-b

1
0

5

8
-b

1
0

9

8
-b

1
1

3

8
-b

1
1

7

8
-b

1
2

1

8
-b

1
2

5

8
-b

1
2

9

9
-b

0
1

9
-b

0
5

default

static

cast

serial

unchecke

raw

deprecat

Lint warnings
“fix-it” day Warnings

Clean up day

A productive
summer intern

Lint warnings enabled in build

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Number of javac lint warnings in JDK 9 jdk repo today

Oracle Confidential 60

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Number of javac lint warnings in JDK 9 jdk repo today

Oracle Confidential 60

Covers all of the following:

• Open code

• Closed code

• Platform-specific code

• Generated code

• -Xlint:all –Werror in
the build

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Number of javac lint warnings in JDK 9 jdk repo today

Oracle Confidential 60

Covers all of the following:

• Open code

• Closed code

• Platform-specific code

• Generated code

• -Xlint:all –Werror in
the build

Warnings-free modules include:

• java.base: packages
java.lang, java.util,
java.math, ….

• java.desktop: packages
java.awt, javax.swing, …

• java.compiler: packages
javax.lang.model, …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Number of javac lint warnings in JDK 9 jdk repo today

Oracle Confidential 60

Covers all of the following:

• Open code

• Closed code

• Platform-specific code

• Generated code

• -Xlint:all –Werror in
the build

Warnings-free modules include:

• java.base: packages
java.lang, java.util,
java.math, ….

• java.desktop: packages
java.awt, javax.swing, …

• java.compiler: packages
javax.lang.model, …

 †corba, jaxp, jax-ws, not included

†

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Technical dividends of going warnings free

• Did you declare a serialVersionUID in your exception type?
(All exceptions are serializable; thanks RMI!)

• Did you override equals and hashCode correctly?
(Nuanced and accurate check.)

• Is that fallthrough in a switch intentional?
(Possible security issue; c.f. “goto fail; goto fail;”)

• Is it really acceptable to have a new use of that deprecated item?

Oracle Confidential 61

javac as the first-line static analysis tool

https://blogs.oracle.com/darcy/entry/warnings_removal_advice

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Technical dividends of going warnings free

• Did you declare a serialVersionUID in your exception type?
(All exceptions are serializable; thanks RMI!)

• Did you override equals and hashCode correctly?
(Nuanced and accurate check.)

• Is that fallthrough in a switch intentional?
(Possible security issue; c.f. “goto fail; goto fail;”)

• Is it really acceptable to have a new use of that deprecated item?

• “Advice on removing javac lint warnings”
https://blogs.oracle.com/darcy/entry/warnings_removal_advice

Oracle Confidential 61

javac as the first-line static analysis tool

https://blogs.oracle.com/darcy/entry/warnings_removal_advice

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Deprecation warnings

• Several hundred deprecation warnings in the JDK

• Generated by use of deprecated types, methods, constructors, fields

• Mandated by JLS §9.6.4.6 @Deprecated

• Can resolve warnings by:

62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Deprecation warnings

• Several hundred deprecation warnings in the JDK

• Generated by use of deprecated types, methods, constructors, fields

• Mandated by JLS §9.6.4.6 @Deprecated

• Can resolve warnings by:

• Propagating @Deprecated to the use-sites too

62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Deprecation warnings

• Several hundred deprecation warnings in the JDK

• Generated by use of deprecated types, methods, constructors, fields

• Mandated by JLS §9.6.4.6 @Deprecated

• Can resolve warnings by:

• Propagating @Deprecated to the use-sites too

• Removing use of the deprecated element(s)

62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Deprecation warnings

• Several hundred deprecation warnings in the JDK

• Generated by use of deprecated types, methods, constructors, fields

• Mandated by JLS §9.6.4.6 @Deprecated

• Can resolve warnings by:

• Propagating @Deprecated to the use-sites too

• Removing use of the deprecated element(s)

• @SuppressWarnings("deprecation")

62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

import p.DepLib;

public class Client2 {

 public static void
 main(String… args) {

 DepLib dl = new DepLib();

 dl.foo();

 }

}

// DepLib.java

package p;

@Deprecated

public class DepLib {

 public DepLib() {}

 public void foo() {return;}

}

63

A wrinkle in Java SE 5.0 through 8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

import p.DepLib;

public class Client2 {

 public static void
 main(String… args) {

 DepLib dl = new DepLib();

 dl.foo();

 }

}

Note: Client2.java uses or
overrides a deprecated API.

// DepLib.java

package p;

@Deprecated

public class DepLib {

 public DepLib() {}

 public void foo() {return;}

}

63

A wrinkle in Java SE 5.0 through 8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

import p.DepLib;

public class Client2 {

 public static void
 main(String… args) {

 DepLib dl = new DepLib();

 dl.foo();

 }

}

// DepLib.java

package p;

@Deprecated

public class DepLib {

 public DepLib() {}

 public void foo() {return;}

}

64

A wrinkle in Java SE 5.0 through 8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

import p.DepLib;

@SuppressWarnings("deprecation")

public class Client2 {

 public static void
 main(String… args) {

 DepLib dl = new DepLib();

 dl.foo();

 }

}

// DepLib.java

package p;

@Deprecated

public class DepLib {

 public DepLib() {}

 public void foo() {return;}

}

64

A wrinkle in Java SE 5.0 through 8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

import p.DepLib;

@SuppressWarnings("deprecation")

public class Client2 {

 public static void
 main(String… args) {

 DepLib dl = new DepLib();

 dl.foo();

 }

}

Note: Client2.java uses or
overrides a deprecated API.

// DepLib.java

package p;

@Deprecated

public class DepLib {

 public DepLib() {}

 public void foo() {return;}

}

64

A wrinkle in Java SE 5.0 through 8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Deprecation warning in detail

Client2.java:1: warning: [deprecation] DepLib in p has
been deprecated
import p.DepLib;
 ^
1 warning

• Warning on import mandated by the JLS

• Use of the type in this location cannot be annotated for suppression

• Warning is unhelpful; if all other uses of the deprecated type can be
suppressed, shouldn’t have to resort to using its fully qualified name
everywhere to be warning-free.

65

With javac -Xlint:deprecation …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Specification update: JLS §9.6.3.6 @Deprecated

A Java compiler must produce a deprecation warning when a type, method, field,
or constructor whose declaration is annotated with the annotation @Deprecated
is used (i.e. overridden, invoked, or referenced by name), unless:

• The use is within an entity that is itself annotated with the annotation
@Deprecated; or

• The use is within an entity that is annotated to suppress the warning with the
annotation @SuppressWarnings("deprecation"); or

• The use and declaration are both within the same outermost class.

66

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Specification update: JLS §9.6.3.6 @Deprecated

A Java compiler must produce a deprecation warning when a type, method, field,
or constructor whose declaration is annotated with the annotation @Deprecated
is used (i.e. overridden, invoked, or referenced by name), unless:

• The use is within an entity that is itself annotated with the annotation
@Deprecated; or

• The use is within an entity that is annotated to suppress the warning with the
annotation @SuppressWarnings("deprecation"); or

• The use and declaration are both within the same outermost class.

• The use is within an import statement that imports the type or member whose
declaration is annotated with @Deprecated.

66

; or

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Result: now tractable to clear a code base of
deprecation warnings.

67

https://twitter.com/DrDeprecator

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Result: now tractable to clear a code base of
deprecation warnings.
(If you’re interested in deprecation, see also Saving the Future from the Past:
Innovations in Deprecation [CON6856], Wednesday, Oct 28, 3:00 p.m by Dr. Deprecator,
@DrDeprecator.)

67

https://twitter.com/DrDeprecator

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Tiered Attribution
Or why and how we re-engineered the compiler from inside out
JEP 215: Tiered Attribution for javac

http://openjdk.java.net/jeps/215
http://openjdk.java.net/jeps/215

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Type Attribution in the compiler pipeline

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Type Attribution in the compiler pipeline

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Type Attribution in action

The main responsibility of type attribution is to assign a type to each
element of a Java program.

void foo(int i, int j, boolean b, boolean v) {
 // Type attribution determines that the expression 'i + j'
 // has type int. The same type is assigned to variable k
 int k = i + j;
 // In this case type attribution determines that the expression 'b && v'
 // has type boolean
 System.out.println(b && v);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Java SE 8 introduced the concept of poly expressions

• Expressions for which its type can be influenced by the target type

• They can have different types in different contexts

72

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Not all expressions are created equal!

116

new ArrayList<>()

100

e.toString()

{ 1, 2 }

?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Standalone expressions

117

new ArrayList<>()

100

e.toString()

{ 1, 2 }

int

String

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Poly expressions

118

new ArrayList<>()

100

e.toString()

{ 1, 2 }

int

String

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Poly expressions

119

new ArrayList<>()

100

e.toString()

{ 1, 2 }

int

String

ArrayList<String>

ArrayList<Integer>

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Poly expressions

120

new ArrayList<>()

100

e.toString()

{ 1, 2 }

int

String

ArrayList<String>

ArrayList<Integer>

double[]

int[]

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Poly expressions

• Lambda expressions

• Method references

• Generic method calls

• Diamond instance creation expressions

• Conditional poly expressions

• Parenthesized poly expressions

76

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Poly expressions

• Lambda expressions

• Method references

• Generic method calls

• Diamond instance creation expressions

• Conditional poly expressions

• Parenthesized poly expressions

76

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Type Inference

It’s a compiler's ability to look at each method invocation and corresponding
declaration to determine the type argument(s) that make the invocation
applicable

77

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 78

Type inference is like linear programming

Linear programming:
subject to constraints,
maximize:
2x + y

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 78

Type inference is like linear programming

y ≥ 1,
y ≤ 5

Linear programming:
subject to constraints,
maximize:
2x + y

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 78

Type inference is like linear programming

y ≥ 1,
y ≤ 5

x ≥ 2, x ≤ 6

Linear programming:
subject to constraints,
maximize:
2x + y

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 78

Type inference is like linear programming

y ≥ 1,
y ≤ 5

x ≥ 2, x ≤ 6

x + y ≤ 8

Linear programming:
subject to constraints,
maximize:
2x + y

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 78

Type inference is like linear programming

y ≥ 1,
y ≤ 5

x ≥ 2, x ≤ 6

x + y ≤ 8

Linear programming:
subject to constraints,
maximize:
2x + y

Simplex method:
One of the top-ten algorithms
of the 20th century, often
very fast solutions, but
exponential in the worst case.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=814654&filter=AND(p_IS_Number:17639)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

public static void main(String argv[]) {
 // There are no type arguments in the right-hand side.
 // How does javac figure out what the types are?
 C<String> c1 = new C<>();
}

Attribution + Inference in action
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 80

Attribution + Inference in action
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

public static void main(
 String args[]) {
 C<String> c1 = new C<>();
}

U <: Object

From U's declaration:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 81

Attribution + Inference in action
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

public static void main(
 String args[]) {
 C<String> c1 = new C<>();
}

U = String

From the target type:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

public static void main(String argv[]) {
 // Summing up, for this invocation javac has discovered that:
 // U <: Object and
 // U = String,
 // With this information the inference engine can figure out
 // that the instantiation of U has only one solution:
 // U := String
 C<String> c1 = new C<>();
}

Attribution + Inference in action
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m0.353s
public static void main(String argv[]) {
 C<String> c2 = new C<>(
 new C<>());
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m0.364s
public static void main(String argv[]) {
 C<String> c3 = new C<>(
 new C<>(
 new C<>()));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m0.436s
public static void main(String argv[]) {
 C<String> c4 = new C<>(
 new C<>(
 new C<>(
 new C<>())));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m0.510s
public static void main(String argv[]) {
 C<String> c5 = new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>()))));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m0.645s
public static void main(String argv[]) {
 C<String> c6 = new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>())))));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m0.899s
public static void main(String argv[]) {
 C<String> c7 = new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>()))))));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m1.448s
public static void main(String argv[]) {
 C<String> c8 = new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>(
 new C<>())))))));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 25m20.590s
public static void main(String argv[]) {
 C<String> c16 = new C<>(
 new C<>(
 new C<>(
 new C<>(
 ...
 new C<>(
 new C<>(
 new C<>())))))))))))))));
}

But once we complicate it...
class C<U> {
 U foo;
 C() {}
 C(C<U> o) { foo = o.foo; }
 C(U foo) { this.foo = foo;}
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// compilation time: 0m49.278s
void foo() {
 m(null, () ->
 m(null, () ->
 m(null, () ->
 m(null, () ->
 m(null, () ->
 m(null, () ->
 m(null, () ->
 m(null, () ->
 m(null, (Callable<String>)null)))))))));
}

Also for lambdas...
class Klass {
 static class A0 { }
 static class A1 { }
 static class A2 { }
 <Z extends A0> Z m(A0 t,
 Callable<Z> ct) { return null; }
 <Z extends A1> Z m(A1 t,
 Callable<Z> ct) { return null; }
 <Z extends A2> Z m(A2 t,
 Callable<Z> ct) { return null; }
 <Z> Z m(Object o,
 Callable<Z> co) { return null; }
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 92

Compiler performance, linear scale

0

400

800

1200

1600

2 4 6 8 10 12 14 16 18 20 22

Compilation time

javac 8

Diamond nesting level

Seconds

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 93

Compiler performance, log scale

0.25

1

4

16

64

256

1024

4096

2 4 6 8 10 12 14 16 18 20 22

Compilation time

javac 8

Diamond nesting level

Seconds

Note: log scale
on y-axis

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Exponential explosion

• Poly expressions are type checked several times against multiple target
types. The same applies for nested expressions, like arguments

• Type inference got more complex and slower

• We can say that the Java 8 compiler is trying to solve a problem as complex
as finding cheap tickets during Thanksgiving days :)

94

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Exponential explosion, mitigating factors

• Occurs in limited settings: typically generated code from tools, IDEs, etc.
Mainly for deeply nested calls which are generally not a recommended
coding pattern.

• Very hard to find in user-written code

• No noticeable slowdown has been detected while compiling
big projects like JDK

• There are alternatives to improve the performance if needed, such as
adding explicit type arguments

95

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Tiered attribution goals

• Re-engineer the compiler in order to add performance robustness and
avoid exponential slowdowns

• Improve compiler performance by reducing the number of passes needed
to attribute a given expression

• Produce same binary results as the previous implementation

96

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Main ideas behind Tiered Attribution

• Gather structural information about an expression

• Use that information during overload resolution to discriminate overloads

• Attribute every expression only once

97

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 98

Computing Fibonacci Numbers

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 99

Compiler performance with tiered attribution

0.25

1

4

16

64

256

1024

4096

2 4 6 8 10 12 14 16 18 20 22

Compilation time

javac 8

javac 9

javac 9 -release 8

Diamond nesting level

Seconds

Note: log scale
on y-axis

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 100

Compiler performance with tiered attribution, cont.

0.25

1

4

16

64

256

1024

4096

2 4 6 8 10 12 14 16 18 20 22

Compilation time

Diamond nesting level

Seconds

Note: log scale
on y-axis

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 100

Compiler performance with tiered attribution, cont.

0.25

1

4

16

64

256

1024

4096

2 4 6 8 10 12 14 16 18 20 22

Compilation time

Diamond nesting level

Seconds

Note: log scale
on y-axis

Linear, y = x

Quadratic, y = x2

Exponential, y = 2x/2

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Tiered Attribution results

• Performance improvement, worst case dramatically improved

• Compatibility with existing attribution approach

• Opened the door to more optimizations and improvements

101

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Summary

102

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JDK 9 Language and Tooling features

• Fundamental development changes coming with modularity

• Smaller improvements coming in other areas:

• Finish long-anticipated polishing of Project Coin,
Project Lambda, and other language enhancements

• Increased developer convenience; more informative warnings

• More robust compiler performance

• Can follow developments in OpenJDK

• EA builds of JDK 9 available today for your evaluation

103

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Leonid Arbuzov

• Srikanth Adayapalam

• Oleg Barbashov

• Dmitry Bessonov

• Alex Buckley

• Maurizio Cimadamore

• Andrei Eremeev

• Robert Field

• Joel Franck

• Jon Gibbons

• Brian Goetz

• Sonali Goel

• Jan Lahoda

• Andreas Lundblad

• Eric McCorkle

• Andrey Nazarov

• Ella Nekipelova

• Matherey Nunez

104

• Bhavesh Patel

• Sergei Pikalev

• Alexander Posledov

• Georgiy Rakov

• Victor Rudometov

• Steve Sides

• Dan Smith

• Kumar Srinivasan

• Elena Votchennikova

Acknowledgements
Engineers who worked on development, specification, QE, or conformance

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

 Q & A
Slides: https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf

 JDK 9 EA builds: https://jdk9.java.net/
JDK 9 EA builds with Jigsaw: https://jdk9.java.net/jigsaw/

105

https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf
https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf
https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf
https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf
https://blogs.oracle.com/darcy/resource/JavaOne/J1_2015-jdk9-langtools.pdf
https://jdk9.java.net/
https://jdk9.java.net/jigsaw/

