
Does My Profiler
Tell The Truth?
Fabian Lange

Profilers are
Measurement Tools

–Grady Booch

„A fool with a tool is still a fool.“

–Christian Bauer

„Zitat hier eingeben.“

Available Tools
Mission Control YourKit Solaris Studio

VisualVM AppDynamics NetBeans Profiler

New Relic JProfiler Honest Profiler

JProbe Dynatrace Satoris

Source: RebelLabs Developer Productivity Report, Page 22: 0t.ee/javaperformance15

http://bit.ly/1MctTHf

Java Virtual Machine
Tool Interface

JSR-163

Java Platform Profiling Architecture defines APIs: 
 
java.lang.instrument

ClassFileTransformer

java.lang.management

MemoryMXBean

ThreadMXBean

How To Measure Code?

Native Agent

written in C

inserted into the JVM using -agentpath

Java Agent

using java.lang.instrument package

loaded using -javaagent

–Werner Heisenberg, 1927

„One cannot measure Java code

without interfering with the JVM“

Error Sources

Overhead

Overhead

Runtime Delay

CPU Consumption

Thread Scheduling

Memory Consumption

Network Saturation

Diskspace Usage

Accuracy

Accuracy
System.currentTimeMillis()	

	/**	
			*	Returns	the	current	time	in	milliseconds.	Note	that	while	the	unit	of	time	of	the	return	value	is	a	millisecond,	
			*	the	granularity	of	the	value	depends	on	the	underlying	operating	system	and	may	be	larger.	For	example,	many	
			*	operating	systems	measure	time	in	units	of	tens	of	milliseconds.	
			*	
			*	See	the	description	of	the	class	<code>Date</code>	for	a	discussion	of	slight	discrepancies	that	may	arise	between	
			*	"computer	time"	and	coordinated	universal	time	(UTC).	
			*/	

System.nanoTime()	
	/**	
			*	Returns	the	current	value	of	the	running	Java	Virtual	Machine's	high-resolution	time	source,	in	nanoseconds.	
			*	
			*	This	method	can	only	be	used	to	measure	elapsed	time	and	is	not	related	to	any	other	notion	of	system	or	wall-clock	
			*	time.	The	value	returned	represents	nanoseconds	since	some	fixed	but	arbitrary	<i>origin</i>	time	(perhaps	in	the	
			*	future,	so	values	may	be	negative).	The	same	origin	is	used	by	all	invocations	of	this	method	in	an	instance	of	a	
			*	Java	virtual	machine;	other	virtual	machine	instances	are	likely	to	use	a	different	origin.	
			*	
			*	This	method	provides	nanosecond	precision,	but	not	necessarily	nanosecond	resolution	(that	is,	how	frequently	the	
			*	value	changes)	-	no	guarantees	are	made	except	that	the	resolution	is	at	least	as	good	as	that	of	
			*	{@link	#currentTimeMillis()}.	
			*	
			*	The	values	returned	by	this	method	become	meaningful	only	when	the	difference	between	two	such	values,	obtained	
			*	within	the	same	instance	of	a	Java	virtual	machine,	is	computed.	
			*/

Time

Time

Wall-Clock Time

“Real” time which has passed since start.

Measurable with a clock on the wall.

CPU Time

Time the CPU was busy.

Measurable but questionable.

Lots of Data

Data Collection

Data Collection

(Stack) Sampling

Checking JVM activity in regular intervals.

Instrumentation

Injection of measurement code.

Sampling II

Reducing data by omission.

Sampling

t
main()

foo()

bar()

baz()

Sampling - Great

t
main()

foo()

bar()

baz()

Sampling - Not So Great

t
main()

foo()

bar()

Instrumentation

Instrumentation

t
main()

foo()

bar()

baz()

Sampling 
vs 

Instrumentation
DEMO

Code on Github
https://github.com/CodingFabian/SamplingVsInstrumentation

Using JProfiler
DEMO

Using HProf
DEMO

Using Honest Profiler
DEMO

Safepoints

Safepoints

Sampling thread has to wait for steady state to interrogate
other threads.

Safepoints are in-between code, so conceptually sampling
never sees running code.

Honest Profiler uses JVMTI AsyncGetCallTrace which does not
wait for safepoints.

github.com/RichardWarburton/honest-profiler

jeremymanson.blogspot.co.uk/2013/07/lightweight-asynchronous-sampling.html

http://jeremymanson.blogspot.co.uk/2013/07/lightweight-asynchronous-sampling.html

From My Daily Work

Performance Tuning Guide

Start off with Sampling

Do not take results to serious

Look for bottlenecks

< 10 ms is most of the time irrelevant when profiling

Get better results from benchmarking

Check code, bytecode, assembly

How Much Influence has
Instrumentation Code?

DEMO

Does My Profiler Tell The
Truth?

NO

Use JMH for
Benchmarks

Further Reading
Dapper, a Large-Scale Distributed Systems Tracing Infrastructure

static.googleusercontent.com/media/research.google.com/de//pubs/archive/36356.pdf

Evaluating the Accuracy of Java Profilers

www-plan.cs.colorado.edu/klipto/mytkowicz-pldi10.pdf

How to Measure Java Performance

blog.codecentric.de/en/2011/10/measure-java-performance-sampling-or-instrumentation/

Java Microbenchmark Harness

openjdk.java.net/projects/code-tools/jmh/

Richard Warbutons Honest Profiler

github.com/RichardWarburton/honest-profiler

http://openjdk.java.net/projects/code-tools/jmh/

Want to know more?

! @CodingFabian

" fabian.lange@instana.com

speakerdeck.com/CodingFabian

$ github.com/CodingFabian

