- redhat

How would ESBs look like,
if they were done today?

Markus Eisele, @myfear
Developer Advocate

markus@jboss.org
October, 2015

“What’s right isn’t always popular.
What’s popular isn’t always right”

Howard Cosell

Large Java EE / J2EE based applications

LoadBalancer

Application Server

Application Server

Technical Implications

Monolithic application - everything is package into a single .ear
Reuse primarily by sharing .jars

A “big” push to production once or twice a year

Single database schema for the entire application

>= 500k loc

>= Heavyweight Infrastructure

Thousands of Testcases

Barely New Testcases

Team and QA Implications

>= 20 Team Member

The single .ear requiring a multi-month test cycle /
Huge bug and feature databases

User Acceptance Undefined

Technical Design Approach

Barely Business Components or Domains
Requiring multiple team involvement & significant

oversight

Q redhat.

And even now ...

Still changing requirements.
New features tend to be HUGE!
Cross-cutting concerns nearly impossible to

implement.

Q redhat.

Technical Dept!

Grown application

We’re lazy!

No education!

Outdated Designpattern?

Inexperienced!

Outdated Runtimes!

We always did it like that.

Outdated Infrastructure!

Q redhat.

Where did we go
from here?

Q redhat.

10

We treated
everything as a
legacy system and
try to solve
integration
problems.

Q redhat.

STANDARDS!

ENTERPRISE!
Enterprise Service Bus
Orchestration
. e
WEBSERVICE
GENTRALIZE!

11

Q redhat.

Technical Implications

12

Still very large codebases
Overloaded IDEs

Hard to understand and modify
Hard to test

Complex dependencies

Small Changes generate big Impact
Difficult to scale

Mostly not rewritten but “re-wired”
Data Segmentation not defined

Scaling difficult

Q redhat.

13

Hmmm ... and
where are we
today?

Q redhat.

Q redhat.

14

15

Name it whatever you
like.

Q redhat.

16

We’re decomposing
monoliths
and evolve them into
microservices
architectures.

Q redhat.

17

Reduce Impact of Change by
Encapsulating Source of
Change

http://martinfowler.com/articles/microservices.html

Q redhat.

18

How to find the
Right
Services?

Q redhat.

From Scratch

19

Domain Driven Design
Bounded contexts
Designed For Automation
Designed for Failure

Independently Deployable

Q redhat.

Evolution From Existing

20

Verb or Use Case
e.g. Checkout Ul

Noun

e.g. Catalog product service

Single Responsible Principle eg.
Unix utilities

Q redhat.

21

What did ESBs do?

Q redhat.

22

Monitor and control routing of message exchange

between services

Resolve contention between communicating service

components

Control deployment and versioning of services

Marshal use of redundant services

Cater for commodity services like

event handling,

data transformation and mapping,

message and event queuing and sequencing,
security or exception handling,

protocol conversion and

enforcing proper quality of communication

service

Q redhat.

23

Let’s deconstruct the
Shit.

Q redhat.

24

”Monitor and control routing of

message exchange between services”

Q redhat.

25

Not really anymore.

“Services do one thing well”
Bunch of different approaches to
service design and interaction.
No centralized point of “contro

I”

Q redhat.

26

Aggregator Pattern
w or w/o Proxy

Chained Pattern

Branch Pattern

Q redhat.

27

"Resolve contention between

communicating service components”

Q redhat.

28

“Smart endpoints and dumb pipes”

- Martin Fowler

http://martinfowler.com/articles/microservices.htmi

Q redhat.

29

“Control deployment and

versioning of services”

Q redhat.

30

Deployment
Configuration

Profiles / App Packaging
Service Discovery
Versions

Monitoring

Governance

Q redhat.

31

“Marshal use of redundant services”

Q redhat.

32

“Decentralized Governance”

- Martin Fowler

http://martinfowler.com/articles/microservices.html#DecentralizedGovernanc
e

Q redhat.

“Cater for commodity services”

33 Q redhat

34

a lightweight service runtime
Cross - Service Security
Transaction Management
Service Scaling

Load Balancing

Deployment

Configuration

Profiles / App Packaging
Service Discovery

Versions

Monitoring

Governance

Failure Handling
Asynchronous vs. Synchronous
Cross - Service Logging

Q redhat.

35

An approach.

Q redhat.

A possible solution...

Container

Service

Registry

%gfabricﬂ

Container

Container

N Load <
Balancer

-\U)) undertow

>
—
-
-
O
(]
(7p)

\4
API| Gateway

4ﬂ/ apiman

Container

N

WildFge< Infiniscon

36

Q redhat.

37

The Pieces

Q redhat.

U

undertow http://undertow.io/

Domain
Controller

CLI

A 4

Backend 1

" ;= g Backend 2
Balancer
Backend 3

Load Balancer HA Server

Group Group

s
s
o

Q redhat.

http://mww.apiman.io/

Home » WU Public Library » @ BookListing

39

ﬁ' BookListing Version: 1.0 + m

Implementation
Plans
Policies

Activity

Service
All Books of the library

@ Created on 2014-03-10
& Created by admin
Version

Version: 1.0

Status: [[Z000

reated on 2014-0%-10
reated by admin

[alal

9]
-

Things To Do

¢ Link my Application to this Service (New Contract)

o Create a new version of this Service (New Version)

Overview

Home » W0 Public Library » #-BookListing

ﬁn BookListing

QOverview

Version: 1.0 ~ New Version

Implementation

Plans
Policies

Activity

Service Implementation

API Endpoint:
htep/flocalhost:S080/jaxb-json/resteasy/library/books/badger

APl Type:
REST v

Save || Cancel

Q redhat.

Nfinisc N

41

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard

Containers Profiles Manage

= devnexus /1.0

RED HAT JBOSS FUSE Management Console
Camel Connect Dashboard

Camel Tree

~w P Camel Contexts
w [camel-example-twitter
+ = Routes
v 5% twitter-demo
% [Endpoints
> MBeans

OPENSHIFT ONLINE

Applications Settings Support

ipaas-meisele.rhcloud.com

Cartridges

Gears

@)Boss Fuse 6.1.0 EA started 1large

Darabases Continuous Integration
3 Add MongoDB 2.4
3 Add MySQL 5.5
3 Add PostgresQL 9.2

& Enable Jenkins

Browse the @ Marketplace, or see the list of cartridges you can add

Health

MQ APIs EIPs

Threads

Diagram

L 4 23

From twitter://search

@redhat com

Add-ons

Started 1 <

Source Code

— s5h://543501234382ec67cc0004d3@ipaas-meisele.rh
1ee Pass this URL to git clone’ to copy the repository localy.
details >

Remore Access

Wantto login to your application?

Delete this application.

% Source

Reqgistry

Qs Debug

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard Health

Welcome

Java Heap Memory

7.4

o
Usés (10s632729)

0/0
Fres (1326155808

Loaded Clases

0.0%

Unlessadclzzzenuns (a)

100.0%

LosdedClassCount (5487)

Logs
2014-10-08 12:44:26 8 INFO

2014-16-98 12:44:26

2014-10-98 12:44:27 9 INFO

2014-16-08 12:44:27 @ INFO

[+ Create

Java Non Heap Memory Containers
Fitter

)
used"(252d8528)

®ipaas /1.0

Active Profiles

» & rabric/ 10
» & nawtio/ 1.0
» & openshitt/ 1.0

Free (

Process CPU Load

= Container | Target

+ Create

Count

. 12|34 12|35 12l36 12i37 12i38 12i39 12|40 12|41 12l42 12i43 12i44 12i45 12|46
014- E Peak thread count
012- g Current thread ¢pu time:
0.10- Daemon thread count
0.08- Total started thread count
0.06- Thread count
0.04- Current thread user time
002- ! ' ' ! ! !] ' ' ! ! ! '
1234 1235 12:36 12037 1236 12:39 12040 1241 12142 1243 1244 1245 12146
000-
com openshiftintemal client RestService | Requesting GET with protocol 1.2 on https://openshift.redhat.com/broker/rest/api
Requesting GET with protocol 1.2 on https://openshift.redhat.com/broker/rest/user
com.openshiftintemal client RestService | Requesting GET with protocol 1.2 on https://openshift.redhat.com/brokan/rest/donains
fLintemal client RestSenvice | Requesting GET with protocol 1.2 on https://opensnift.redhat.com/broker,/rest/donain/meisele/applications?include=cartridges

Q redhat.

42

IEMD

Fabric8 V2 ‘S@I

fabric8

* Implemented with Docker and
Kubernetes

* Use any JVM (or any technology)

 Docker images, encourage static, well-
defined, well-tested deployments

* Provides networking, JVM isolation,
orchestration, auto-scaling, health
checks, cloud deployments

« Still in community!

« Supports OpenShift v3

Q redhat.

43

And keep in mind....

Q redhat.

44

DevOps .. Is a culture.

O Operations and development are skills, not
roles. Delivery teams are composed of
people with all the necessary sKkills.

O Delivery teams run software products - not
projects - that run from inception to
retirement

Q redhat.

45

aka “Evolutionary Design”

Let’s take one
step at a time and
not solve
everything at
once.

Q redhat.

46

Easy As That?

Q redhat.

a7

WARNING: Challenges ahead!

No silver bullet; distributed systems are *hard*
Dependency hell, custom shared libraries
Fragmented and inconsistent management
Team communication challenges

Health checking, monitoring, liveness

Over architecting, performance concerns, things
spiraling out of control fast

Q redhat.

48

WARNING: Challenges ahead!

Complex Runtime: many moving parts
Distributed Systems are inherently complex
Services are deployed on multiple instances
Decentralized Data (Distributed Transactions vs
eventual consistency)

Communication between services (Network and
Configuration)

Synchronous vs. Asynchronous vs. Messaging
Communication

Communication overhead (n2n)

Failure Handling (Circuit Breaker)
Service-/Metadata Reqistry

Q redhat.

49

Load Balancing

Changes Cartridges

APl Management

Governance

Versions

Private

Configuration

Deployment
?
* Nodes
Monitoring
Security
Patches
Hybrid | Public

Q redhat.

50

And this is only the
beginning...

The industry is still
learning a lot.

Q redhat.

51

Logstash

AVAY A
. v

MESQOS

DEFEND YOUR APP

eureka

ribbon

(}GEARD

Q redhat.

52

Takeaway:

Correct functional decomposition is
crucial for microservices:

pretty hard to get right from the
start

a modular system can evolve to
microservices

balance the needs with the costs
work on it evolutionary

Q redhat.

53

Are they here to stay?

Q redhat.

54

Nobody knows.

Q redhat.

55

Take with you today:

Q redhat.

56

* There is no single successor to ESBs.
 The whole turned into pieces.
 We’re still evolving them.

Q redhat.

57

rt@]aﬂ JBUG

'

http://bit.ly/virtualJBUG
@vJBUG

Virtual JBoss Users Group

Q redhat.

58

O'REILLY"

Modern Java EE
Design Patterns

Building Scalable Architecture for
Sustainable Enterprise Development

Markus Eisele

http://developers.redhat.com/promotions/distributed-javaee-architecture

Q redhat.

http://www.lordofthejars.com/2014/07/rxjava-java8-java-ee-7-arquillian-bliss.html

http://www.lordofthejars.com/2014/09/defend-your-application-with-hystrix.html

http://techbloqg.netflix.com/2012/02/fault-tolerance-in-high-volume.html

http://martinfowler.com/articles/microservices.html

http://microservices.io/patterns/microservices.html

http://techblog.netflix.com/2013/01/optimizing-netflix-api.html

http://www.infoq.com/articles/microservices-intro

https://sites.google.com/a/jezhumble.net/devops-manifesto/

http://www.lordofthejars.com/2014/07/rxjava-java8-java-ee-7-arquillian-bliss.html
http://www.lordofthejars.com/2014/09/defend-your-application-with-hystrix.html
http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/microservices.html
http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
http://www.infoq.com/articles/microservices-intro
https://sites.google.com/a/jezhumble.net/devops-manifesto/

