Swimming upstream
INn the container revolution

Containerless Continuous Delivery

Bert Jan Schrijver

Y @bjschrijver



Bert Jan Schrijver

@ point.

s
e

‘ MALWBERG

®

Y @bjschrijver






Definitions

Continuous Integration Continuous Deployment

Continuous Delivery DevOps






Categorie: Hoofd

. - = - e e e Gemiddelde resultaten

Rekenen

You're a hero!
o e -"___.-' TAEE e .{{% : {H Rekenen (S-score)

. -_ v
. .

» A ] Oridntsie

Organen en cellen o— ,

Collect these flavours

Before Monday, 3rd August 2015

Extra luisteren

Dashboard v 5 v \ O

Tostsen en Ojfers ‘ oF ores

kS

, - N | 6,,&3‘5

Gemaakte toetsen

@ Rokonen 1F-15-2F deel 1

@ Rokenen 1F-15-2F deel 2

B
Bl
N\ P
/ f
\ ¥ ) ‘."
- e e



History

o Differences lead to issues

Modern development culture

4l

Traditional operations Things needed to change



“ Let's spend the next few months..

..working on automated testing and build/release
infrastructure, and redesigning how our application is

written. We can postpone our feature development. ?’

..sald no product manager ever.




Approach

[

Expert team Keep the shop open Define principles






Master branch is always releasable

Don't merge it until it's done.

Every change is developed and tested in a feature branch.



Each commit is tested extensively

Rely on multiple layers of tests.

Unit/integration (Java & JavaScript), mutation, end-to-end (FitNesse/BrowserStack),
performance (Gatling), Sonar for quality and coverage reporting.



Every delivery step is a Jenkins job

Jenkins as the heart of the delivery process.

Manage builds, tests, QA and deployments from a single place.



Deployments are roll-forward only

Keep moving aheaé:

After deploying 6 new features, when one has an‘issue, why roll back 5°good features?
Don’t. Just rollout a'fix quickly.



Infrastructure as code - for everything

Hands off.

No logging in to servers. Need a change or upgrade? Just update the server recipe.



Put everything in auto scaling groups

Even when you don't need to scale... yet.

The flexibility and resilience is well worth it.
So how about using containers? The EC2 instance is our container.




No downtime In production

Our end users are the Facebook generation.

You can’t explain maintenance windows to modern end users anymore.



In production

‘ 3
i .", : ¥
AP o

i YN
\i(__. ES
o L‘.'

¢ 11‘,,‘ )

Work proactive, not reactive.

N
Make suréyou find the problem beforeit finds you.

.
- L O



Repeating tasks are executable for all team members

Specialisms are OK, but only for incidental tasks.

Repeating tasks such as viewing logs and doing deployments must be common jobs.



DevOps teams work on a

Give teams the freedom to work 1h a way that works for them.

Differences between teams are OK. A team that’s dependent on external help is not.



Challenges

Amazon has limits
Devs need to step up their game

06 02 Resistance
Don’t depend on availability

of Ops experts rj

Communication is key

How to test Puppet changes 04



Business benefits

How to sell this to your boss.

Availability
Auto scaling and pro-active monitoring
boost availability. A lot.

Continuity

Automated provisioning makes sure that
every environment can be re-built from
scratch in minutes.

Aqility

High level of automation results in
shorter release cycles and faster time to
market.

Cost reduction

Lower operations costs due to scheduling
and scaling. Lower maintenance costs due
to high degree of automation.

Better reaction speed
Faster problem analysis and solution.

SISO



Looking ahead

01 Better monitoring and dashboards @Continuous performance testing

03 Continuous security testing @Automated resilience testing



Questions?







