
Swimming upstream
in the container revolution

Containerless Continuous Delivery

Bert	
 Jan	
 Schrijver
@bjschrijverbertjan@jpoint.nl

Bert Jan Schrijver
L	
 e	
 t	
 ‘	
 s	
 	
 m	
 e	
 e	
 t

@bjschrijver

Outline
S o w h a t ‘ s n e x t ?

Approach

Principles

Introduction

Definitions
Challenges	
 and	

lessons	
 learned

Business	
 benefits

Looking	
 ahead

Every	
 change	
 goes	
 through	
 the	

build/test	
 pipeline	
 and	

automatically	
 gets	
 put	
 into	

production.

Continuous Deployment

Development	
 and	
 operations	

engineers	
 participate	
 together	
 in	

the	
 entire	
 product	
 lifecycle	
 -­‐	
 and	
 are	

responsible	
 together	
 for	
 the	

product.

DevOps
Building	
 and	
 testing	
 software	
 in	

such	
 a	
 way	
 that	
 the	
 software	
 can	
 be	

released	
 to	
 production	
 at	
 any	
 time.	

 
"Ship	
 early,	
 ship	
 often,	
 sacrificing	

features,	
 never	
 quality"	
 -­‐	
 Kyle	
 Neath

Continuous Delivery

Team	
 members	
 integrate	
 their	
 work	

frequently.	
 Commits	
 are	
 verified	
 by	

automated	
 builds	
 and	
 tests.

Continuous Integration

Definitions
Who’s	
 who	
 in	
 DevOps

Malmberg	
 is	
 an	
 educational	

publisher	
 in	
 the	
 Netherlands.  
Malmberg	
 is	
 building	
 modern,	

rich	
 and	
 scalable	
 e-­‐learning	

applications	
 using	
 Java	
 8,	
 Vert.x,	

AngularJS	
 and	
 MongoDB,	

running	
 on	
 Amazon	
 	

cloud	
 services.

About Malmberg

Differences lead to issues
Communication between development
and operations was slow, problem
analysis in production was difficult and
releases took a lot of time.

Traditional operations
Production environments managed

by external operations partner.
Differences in infrastructure between

development and production.

Modern development culture
Modern tools, lots of automation.
Test environments are managed

by developers.

History
About	
 a	
 year	
 ago

Things needed to change
Issues and differences between
development and operations were
slowing us down. We needed to shift
strategies to keep progressing.

…said no product manager ever.
J.	
 Paul	
 Reed

Let’s spend the next few months..

..working	
 on	
 automated	
 testing	
 and	
 build/release	

infrastructure,	
 	
 and	
 redesigning	
 how	
 our	
 application	
 is	

written.	
 We	
 can	
 postpone	
 our	
 feature	
 development.

“

”

Build a complete new setup to
allow development teams to

transform to the new
situation at their own pace.

Keep the shop open
Build a dedicated team of

Devs, Ops and Cloud experts.

Expert team
Define key points that identify

your approach and help you
set goals.

Define principles

Approach
How	
 we	
 initiated	
 change.

Principles

Master branch is always releasable
Principle 1

Every change is developed and tested in a feature branch.

Don’t merge it until it’s done.

Unit/integration (Java & JavaScript), mutation, end-to-end (FitNesse/BrowserStack),
performance (Gatling), Sonar for quality and coverage reporting.

Rely on multiple layers of tests.

Each commit is tested extensively
Principle 2

Manage builds, tests, QA and deployments from a single place.

Jenkins as the heart of the delivery process.

Every delivery step is a Jenkins job
Principle 3

After deploying 6 new features, when one has an issue, why roll back 5 good features?
Don’t. Just roll out a fix quickly.

Keep moving ahead.

Deployments are roll-forward only
Principle 4

No logging in to servers. Need a change or upgrade? Just update the server recipe.

Hands off.

Infrastructure as code - for everything
Principle 5

The flexibility and resilience is well worth it.
So how about using containers? The EC2 instance is our container. 

Even when you don’t need to scale… yet.

Put everything in auto scaling groups
Principle 6

You can’t explain maintenance windows to modern end users anymore.

Our end users are the Facebook generation.

No downtime in production
Principle 7

Make sure you find the problem before it finds you.

Work proactive, not reactive.

Eyes and ears in production
Principle 8

Repeating tasks such as viewing logs and doing deployments must be common jobs.

Specialisms are OK, but only for incidental tasks.

Repeating tasks are executable for all team members
Principle 9

Differences between teams are OK. A team that’s dependent on external help is not.

Give teams the freedom to work in a way that works for them.

DevOps teams work on a self service basis
Principle 10

Challenges

01
When you automate everything and
keep growing, chances are you’re
going to hit limits.

Amazon has limits

04
All environments are provisioned
automatically. Challenge: how to

prevent testing directly in
production.

How to test Puppet changes

Not all developers are comfortable
with managing infrastructure and

middleware.

Devs need to step up their game

06

When transforming an organisation,
you need to be really clear about
where things are going, why things
are happening and when this will
impact teams.

Communication is key03

Don't assume that cultural change
won't be an issue. It will.

Resistance02
This kills team progress.

Don’t depend on availability
of Ops experts

05

and	
 lessons	
 learned

Auto scaling and pro-active monitoring
boost availability. A lot.

Availability

Business benefits

High level of automation results in
shorter release cycles and faster time to
market.

Agility

Automated provisioning makes sure that
every environment can be re-built from
scratch in minutes.

Continuity

Lower operations costs due to scheduling
and scaling. Lower maintenance costs due
to high degree of automation.

Cost reduction

Faster problem analysis and solution.
Better reaction speed

How to sell this to your boss.

Get	
 the	
 teams	
 the	
 information	
 they	
 need,	

readily	
 available	
 on	
 a	
 dashboard	
 visible	
 from	

their	
 desks.

Better monitoring and dashboards

Looking ahead

01

There	
 is	
 no	
 silver	
 bullet	
 here,	
 but	
 useful	
 tools	

and	
 practices	
 do	
 exist.

Continuous security testing03

Daily	
 performance	
 runs	
 on	
 test	
 environments	

and	
 continuous	
 end-­‐user	
 performance	

monitoring	
 in	
 production.

Continuous performance testing02

The	
 only	
 way	
 to	
 be	
 really	
 prepared	
 for	
 failure	

is	
 to	
 make	
 sure	
 that	
 things	
 will	
 fail	
 by	
 making	

it	
 fail	
 yourself.

Automated resilience testing04

Stuff we’re still working on

Questions?

@bjschrijver

Thanks for your time.
Liked	
 it?	
 Tweet	
 it! @bjschrijver

