GC Tuning Confessions
Of A Performance
Engineer

Monica Beckwith
monica@codekaram.com
@mon_beck
www.linkedin.com/in/monicabeckwith

JavaOne Conference
Oct. 26th, 2015

mailto:monica@codekaram.com
https://twitter.com/mon_beck
http://www.linkedin.com/in/monicabeckwith

About Me

« JVM/GC Performance Engineer/Consultant
* Worked at AMD, Sun, Oracle...

* Worked with HotSpot JVM

 JVM heuristics, JIT compiler, GCs:
Parallel(Old) GC, G1 GC, CMS GC

5 ©Ro15 CodeKaram

About loday's lalk

A little bit about Performance Engineering
Insight into Garbage Collectors
OpendDK HotSpot GCs

* The Tradeoffs

« GC Algorithms

« Key Topics

Summary

e GC Tuneables

3 ©ro185 CodeKaram

Performance
—ngineering

Performance Engineering

Qaquiramamﬁs

"D&Sigm

Impi@mamﬁaﬁom

_i.mr\ . Bavetwpmam%

Performance
Requirements & Test

Performance

Amai.ajsis

©R015 CodeKaram

Performance Requirements

» Service level agreements (SLAS) for:

e throughput,

ate
Mmet
JAVV/=!

ncy and other response time related

‘ICS

—.g. Response time (RT) metrics -

rage (RT), max or worst-case RT, 99th

percentile RT...

5 ©Ro18 CodeKaram

Response [Ime Metrics

Number of GC .
Minimum (ms)
events
37353 7.622
34920 7.258
36270 0.432
40636 7.353

. ©R0o15 CodeKaram

Response [Ime Metrics

Number of GC Minimum (ms) | Average (ms)
events
37353 7.622 307.741
34920 7.258 320.778
36270 6.432 321.483
40636 7.353 323.143

5 ©2018 CodeKaram

Response [Ime Metrics

Number of | Minimum Average 99N .
Percentile
GC events (Mms) (Mms)
(ms)
System 37353 /.622 307.741 940.901
System?2 34920 7.258 320.778 1006.607
System3 36270 6.432 321.483 1004.018
System4 40636 /.353 323.143 1041.225

9 ©ro185 CodeKaram

Response [Ime Metrics

Number .. 99th .
Minimum | Average . Maximum
of GC (ms) (ms) Percentile (M)
events (MSs)
Sys1tem 37353 | 7622 |307.741| 940.901 | 3131.331
Sysztem 34920 | 7.258 |320.778| 1006.607 | 2744.588
Sysgem 36270 | 6.432 |321.483| 1004.018 | 1681.308
Sy‘jem 40636 | 7.353 |323.143| 1041.225

10

©Ro18 CodeKaram

Response [Ime Metrics

99th .
. Maximum
Average (ms)| Percentile
(ms)
(ms)
System 307.741 940.901 3131.331
System?2 320.778 1006.607 2744 588
Systema3 321.483 1004.018 1681.308
System4 323.143 1041.225

11 ©R018 CodeKaram

Insight into GCs

Fun Facts!

o &rC caln NOT eliminate YOUT mMemory
leales!

* GC (and heap ciu,m[p) can provide an
insight into your o\pptwaﬁww

13 ©2018 CodeKaram

14 ©Ro15 CodeKaram

|deal GC?

Maximize Throughput v/
Minimize LQE@;MCv \/

15 ©Rol1s CodeKaram

|deal GC?

Maximize Throughput v/
Minimize Laﬁevw:j \/
Minimize Footprint \/

16 ©2015 CodeKaram

17 ©Rro18 CodeKaram

OpendDK HotSpot
GCs: The TRADE/OFF

Fun Fact!

Most OpenIDK HotSpot users would Like to
increase their (Java) heap space bukb they
fear full garbage collections.

19 ©2018 CodeKaram

The Tradeoft -

* Throughput and latency are the two main drivers
towards refinement of GC algorithms.

20 ©ro185 CodeKaram

The Throughput Maximizer

Maximiize
Throu,g;hpu,&
Grenerakbional Parallel Worlk
Sko pw%he_“
Young oLd world Co ncur rpm
Threads Threads

1 ©ro185 CodeKaram

5 ©Rro18 CodeKaram

Mr. Latency Sensitive

~ La%ama:v Sensitive

No/Parkial N
") (,c:«maurremav
L.,om[zw&:&cm f
Mosﬂv
Concurrent @a\rb&ga ~irsk
Mark and Sm&ap

3 ©2015 CodeKaram

Fun Fact!

ALl GCs in OpenIDK HotSpot fallback to a
{u,i.i,v compacting s&apmﬁhemmortd garbaqge
collection called the “full” GC.

» Tuning can help avoid or postpone full GCs in
many cases.

o4 ©R015 CodeKaram

OpendDK HotSpot
GCs: Algorithms

The Generational Java Heap

Allocakions SUrvivors

Old Grenerakion

Young Generation Tenured

6 ©2015 CodeKaram

OpendDK HotSpot
Collectors

*Similar =C |

| ; ',‘ 4 | e . h
Algorithms | | Different GC Algorithms

Ai.wavs aoi.i.e.t:%ec& i ks ev&ir@.&j

27 ©R015 CodeKaram

The Serial Collector

‘: Single Threaded - Entire
l Heap Marked, Swept and

Single ThreadeH
-f | LQMFQCEQd A ks em&re&v

Atwavs aoi.i.m:&ec& i ks Qmﬁmﬁj

o8 ©2015 CodeKaram

The Serial Collector

Java : | £ Java : 4 R . Java
Apptia&&iom EYC;!.:\MS j‘"’ Appiica&icn Oth G: AF?FJLE,CQ&E,OM
Threads B Threads Threa Threads

S

29 ©2018 CodeKaram

The Throughput Collector

‘: Mulbi-Threaded - Enkire
§ Heap Marked, Swept and
Lampat&ed u iLks em&w@.&j

Atwavs aoi.i.e.f:%ec& i ks Quﬁreﬁj

30 ©2015 CodeKaram

The Throughput Collector

Java : £ Java : 4 R . Java
EYOMMS GC Application i Ola GC i Application
i Threads Threads Threads Threads

> |

Apptia&&iom
Threads

S

>

|] |]
- fa o sl s SN] -
|] |]

31 ©2018 CodeKaram

The CMS Collector

‘: Mulki-Threaded - Mosﬁj
- Cowncurrent Marked and

Mulbi-Thredded
5 | SM@.PE i ks em&ir@.&v

Atwavs aoi.i.m:&ec& i ks Qmﬁmﬁj

30 ©2015 CodeKaram

The CMS Collector

| CMS - | |
Java Java Java Java Java
Youn]) Lkt . . Youn CMS
Application ;CS “}PPLLﬁQ&LO&} I;‘uhii .AF}PLLCO\ELOV} ?Cséwpuca&m:\ﬁe:mk Application
Threads : P Threads §| M4 { Threads : 44 Threads | ! Threads

?‘fhrmclsg iThreads: Threa iThreads

Concurrent Concurrent Concurrent
CMS Threads CMS Threads CMS Threads

13 ©2018 CodeKaram

GC Algorithms - Key
lopics

ers Full (Fail-Safe)

romo&om
-

Promotion Fallures In The
Throughput Collector

The Throughput Collector -
Java Heap

Allocakions SUrvivors

Old Generakion

Youhg Generation T@.M Mrﬁd

18 ©2015 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Grenerakion

Free Spaﬁe

- Oﬁﬁupied Spate

39 ©r0ol185 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Grenerakion

e

- To-be Promoted Object 1

40 ©2018 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Grenerakion

41 ©r0ol185 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Grenerakion

| B4
. To-be Promcted Object 2

40 ©2018 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Grenerakion

43 ©2018 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Grenerakion

44 ©2018 CodeKaram

The Throughput Collector -
Contiguous Old Generation

Old Greneration

45 ©2018 CodeKaram

Promotion Failures &

Concurrent Mode Failures
In The CMS Collector

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

Free List

Free SP&C@.

- Occupied Space

47 ©2018 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

B BRIl

A.v

.. To-be Promoted Object 1

48 ©2018 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

Free List

Free Spm:e

- Otr:u,pi,eci Spom:e

49 ©2018 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

m

To-be Promoted Object 2

50 ©r0ol185 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

Free Lisk -{

S P

Free SP&CQ

- Otr:upi,ed Spo«:e

51 ©2015 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

i
i

<

l To-be Promoted Object 3

55 ©2018 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

53 ©r0ol185 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

54 ©2018 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

55 ©r0ol185 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

Old Greneration

56 ©r0ol185 CodeKaram

The CMS Collector -
Fragmented Old Generation

Old Greneration

y
!
;

57 ©2018 CodeKaram

The CMS Collector -
Concurrent Mode Failures

* Your old generation is getting filled before a
concurrent cycle can complete and free up
space.

* Fragmentation has crept In.

» Causes - marking threshold is too high, heap too
small, or high application mutation rate

58 ©Ro18 CodeKaram

Incremental Compaction
In The G1 Collector

The Garbage First Collector
- Regionalized Heap

Survivor

Hummt\gous

otd

60

©R0o15 CodeKaram

The Garbage First Collector

£.9.. Current heap configuration -

Surv
LVorT
3

61 ©2018 CodeKaram

The Garbage First Collector

s 0

E.q. During a young collection -

60 ©2018 CodeKaram

The Garbage First Collector

E.9.: After a young collection -

oL
4

oLd

Sur |
viv - oLd

or

63 ©2018 CodeKaram

The Garbage First Collector

£.9.. Current heap configuration -

oL
4

Sur | |
i viv O | ‘, Otd

or

64 ©ro185 CodeKaram

The Garbage First Collector

£.9. Reclamation of a garbage-filled region
during &b_g_g.mcteav\up Phase -

oL
4

Sur
i viv

or

©R0o15 CodeKaram

The Garbage First Collector

£.9. Reclamation of a garbage-filled region
during &b_g_g.mcteav\up pkase -

oL
4

Sur 3
i viv | # Otd
4\‘ P

or

The Garbage First Collector

£.9.. Current heap configuration -

oL

=

Sur |
Y J old

or

67 ©2018 CodeKaram

The Garbage First Collector

£.q. During a mixed collection -

oL
4

ot tgtd
g g

68

T(©R015 CodeKaram

The Garbage First Collector

£.9. After a mixed collection -

Sur
VLV

69 ©2015 CodeKaram

Promotion/Evacuation
Faillures In The G
Collector

The Garbage First Collector
- Evacuation Fallures

e \When't
SUrvivo

'S Or tenu

nere are No more regions available for

red objects, G1 GC encounters

an evacuation failure.

* An evacuation failure is expensive and the usual
pattern is that it you see a couple of evacuation
failures; full GC could* soon follow.

21 ©Ro18 CodeKaram

The Garbage First Collector -
Avolding evacuation Failures

A kaavii.v tuned IVM command Line

m&v

be reskricting the G1 GC

ergonomics and ad&g&abdi&vq

» Start wit
reasona

N Just your heap sizes and a

Dle pause time goal

25 ©ro185 CodeKaram

The Garbage First Collector -
Avolding evacuation Failures

Your Live data set + long Live
Eransient daka may be too larqe for
the old generation

» Check L

BN

aCCOomir

and Increase heap to

odate everything in the old
generation.

73 ©ro185 CodeKaram

The Garbage First Collector -
Avolding evacuation Failures

Initiating Heap Bccupancy Threshold

could be bhe issue.

» Check IHOP and make sure it accommodates
the LDS+.

» |[HOP th
Delayec

reshold too high -> Delayed marking ->
incremental compaction -> Evacuation

—allures!

74 ©R018 CodeKaram

The Garbage First Collector -
Avolding evacuation Failures

Marlkeiing Cjﬁ:iﬁ. could be &o\mv\g too
long to «tompi@ﬁ@%’

» |[ncrease concurrent marking threads

» Reduce [HOP

75 ©2015 CodeKaram

The Garbage First Collector -
Avolding evacuation Failures

to-space survivors are the probtam?

» |ncrease the G1Reserve
survivors are triggering t
fallures!

/6

Percent, If to-space

ne evacuation

©Ro18 CodeKaram

The Garbage First Collector -
Avolding evacuation Failures

ﬂfragmen%a&om al issue?

77 ©R018 CodeKaram

-ragmentation In Ihe
G1 Collector

G1 Heap Waste Percentage

« G1 GC is designed to “absorb” some
fragmentation.

* Default is 5% of the total Java heap

* Tradeoff so that expensive regions are left out.

79 ©Rro185 CodeKaram

G1 Mixed GC (Region)
| Iveness Threshold

« G1 GC’s old regions are also designed to
‘absorb” some fragmentation.

e Default is 85% liveness in a G1 region.

* Tradeoff so that expensive regions are left out.

80 ©Ro18 CodeKaram

The Garbage First Collector
- Humongous Objects

A youhg generation region

An old generation regiown

81 ©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

Object < 0% of
- Gl region size

29 Object »= §0% of
X Gl region size

Object > &1

regLon size

8o ©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

L
-) b

| Object < 50% of
Gl region size

83 ©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

Object >= 50% of
Gl region size

84 ©R018 CodeKaram

The Garbage First Collector
- Humongous Objects

- ’ ?)
Object » 1
-/ y

a5 ©2018 CodeKaram

The Garbage First Collector
- Humongous Objects

Ob ject NOT Humongous

Ob ject Humongous —_Wosked

e Spaaa!
Object Humongous ->
Needs Contiquous Regions

36 ©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

Ici@;attv, humongous objects are few in
number and are short Lived.

» A |ot of long-lived humongous objects can
cause evacuation failures since humongous
regions add to the old generation occupancy.

87 ©ro185 CodeKaram

G1 GC Logs - Key
lopics

G1 GC Log

154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]

[Parallel Time: 253.2 ms, GC Workers: 8]
[GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
[Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: @.1, Sum: 1.4]
[Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]

[Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]

[Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
[Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
[Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
[Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
[GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
[GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
[GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]

[Code Root Fixup: 0.1 ms]

[Code Root Purge: 0.0 ms]

[Clear CT: 0.7 ms]

[Other: 4.4 ms]
[Choose CSet: 0.0 ms]
[Ref Proc: 0.3 ms]
[Ref Eng: 0.0 ms]
[Redirty Cards: 0.3 ms]
[Humongous Reclaim: 0.0 ms]
[Free CSet: 3.2 ms]

[Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]

[Times: user=1.72 sys=0.14, real=0.26 secs]

89 ©ro185 CodeKaram

el Time: 253.2 ms, GC Workers: 8]
Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
xt Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
pdate RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
[Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
[Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
[Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
[Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
[Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
[GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
[GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
e Root Fixup: 0.1 ms]
e Root Purge: 0.0 ms]
r CT: 0.7 ms]
: 4.4 ms]
ose (CSet: 0.0 ms]
Proc: 0.3 ms]
ng: 0.0 ms]
y Cards: 0.3 ms]
us Reclaim: 0.0 ms]
: 3.2 ms]
4972 .0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)-
ys=0.14, real=0.26 secs]

©Ro15 CodeKaram

G1 GC Log

154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]

91 ©ro185 CodeKaram

G1 GC Log

[Parallel Time: 253.2 ms, GC Workers: 8]
[GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
[Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: @.1, Sum: 1.4]
[Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]

[Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]

[Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
[Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
[Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
[Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
[GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
[GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
[GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]

92 ©2015 CodeKaram

G1 GC Log

[Parallel Time: 253.2 ms, GC Workers: 8]

[GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]

[Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]

[Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
[Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]

[Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]

[Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]

[Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: ©0.3, Sum: 1622.4]

[Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: @.1, Sum: 0.5]

[GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]

[GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]

[GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]

93 ©2015 CodeKaram

G1 GC Log

[Code Root Fixup: 0.1 ms]
[Code Root Purge: 0.0 ms]
[Clear CT: 0.7 ms]
[Other: 4.4 ms]
[Choose CSet: 0.0 ms]
[Ref Proc: 0.3 ms]
[Ref Enqg: 0.0 ms]
[Redirty Cards: 0.3 ms]
[Humongous Reclaim: 0.0 ms]
[Free CSet: 3.2 ms]

94 ©R0o15 CodeKaram

G1 GC Log

[Code Root Fixup: 0.1 ms]
[Code Root Purge: 0.0 ms]
[Clear CT: 0.7 ms]

[Other: 4.4 ms]

[Choose CSet: 0.0 ms]
[Ref Proc: 0.3 ms]

[Ref Eng: 0.0 ms]
[Redirty Cards: 0.3 ms]

[Humongous Reclaim: 0.0 ms]
[Free CSet: 3.2 ms]

95

©Ro18 CodeKaram

G1 GC Log

[Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
[Times: user=1.72 sys=0.14, real=0.26 secs]

06 ©R0O18 COd@KO\T’&M

Generation Sizing

[Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors:
148 .0M->204 .0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]

[Eden: Occupaney before GC(Eden size before
GC)->0ccupancy after GC(Eden size after GC)
Survivors: Size before GC->Size after GC Heap:

Occupancy before GC(Heap size before GC)-

»Occupancy after GC(Heap size after GC)]

97 ©2015 CodeKaram

Occupancy in MBs

Heap Information Plot

30000

22500

15000

7500 W

e e ————
OM

2000 3750 5000 ©250 /500 8750 10000 11250 12500

TimeStamps
4 Eden Occupancy Before GC “ Eden Size After GC
2 Survivor Size After GC “ Old Generation Occupancy After GC
% Heap Occupancy Before GC 4 Heap Size

08 ©2015 CodeKaram

Scaling: GC Times vs Sys Times

[Times: user=1.72 sys=0.14, real=0.26 secs]

Scaling: user time/real time = 6.6

99 ©ro185 CodeKaram

Scaling: High Sys Times

- "
2 ™, S
. 5 Menmor
SN&FFLMQ? p, : v y
- R Lssues?
4 “‘\v "h..._ jE
22 T , 4
Sy
‘T“ro\msgarem% huge
4 10? y
X) | pages enabled??x

" y

100 ©R015 CodeKaram

Reference Processing Times

[Ref Proc: 0.3 ms]
Check for high time spent in ‘Ref Proc’.
Also, check your Remark pause times:
9.972: [GC remark 9.972: [Finalize Marking, 0.0007865 secs]

9.973: [GC ref-proc, 0.0027669 secs] 9.976: [Unloading,
0.0075832 secs], 0.0116215 secs]

If Remark pauses are high or increasing and if ‘ref-
prm‘:’ is the major contributor - use: —XX:
+ParallelRefProcEnabled

0 ©2015 CodeKaram

GC Overhead vs Elapsed
Time

*(Qverhead 1s an indication of the frequency of
stop the world GC events.

The more ffrequ,ev\& the &G C events - The more
Lm‘éﬁbj tk s ko Mega&vebj LMPQ@E QPPLE,«&Q&LOM
throughput

*GC Elapsed Time indicated the amount of time 1t
takes to execute stop the world GC events

The higher the &GC eiapsed time - Ehe lower Ehe
appli&&%&ov\ responsiveness due to the &C
nduced latencies

102 ©R015 CodeKaram

What have we learned so
far?

Fast Palh
Most 4 /locations —> Eden Spd@e

Eden Ful!? Stard Yoang Collection: Keep A// oC’/dZ‘/ng)

Oé/'ecf s A 3@0/ In SwUrvivor Spaae 7 Promote: Keep A. 3//73)

Fast Path
Prorotions d__ﬁ)* O/d Generation

* CMS promotes to fitting free space out of a free List.

104 ©R0o15 CodeKaram

GC Tuneables - The
Throughput Collector

Groal:
aged
Only promote ob jects after you have hozed them
appropriately
Tunables:

Everything related to aging objects and
generation sizing -

NewRabio, (MaxINewSize, SurvivorRatio,
(Max)TenuringThreshold

105 ©R015 CodeKaram

GC Tuneables - The
Throughput Collector

Things to remember -

e Applications with steady behavior rarely need
AdaptiveSizePolicy to be enabled.

* Overflow gets promoted into the old generation
* Provide larger survivor spaces for transient data.

* |n most cases, young generation sizing has the most eftect
on throughput

e Size the young generation to maintain the GC overhead to
less than 5%.

106 ©2015 CodeKaram

GC Tuneables - The CMS
Collector

oal:
aged
Only promote ob jects after you have hozed them
appropria&ei,j
Tunables:

Everything related to aging objects and young
qgeneration sizihng skill appties here.

The concurrent thread counts and marking
threshold are addition tunables for CMS

107 ©R015 CodeKaram

GC Tuneables - The CMS
Collector

Things to remember -

* Premature promotions are very expensive in CMS and could lead to
fragmentation

* You can reduce the CMS cycle duration by adding more concurrent
threads: ConcGCThreads.

e Remember that this will increase the concurrent overhead.
e You can manually tune the marking threshold (adaptive by default)

o CMSInitiatingOccupancyFraction & UseCMSlInitiatingOccupancyOnly
will help fix the marking threshold.

* Note: The threshold is expressed as a percentage of the old generation
occupancy

108 ©2015 CodeKaram

GC Tuneables - The (G1
Collector

&roal:

Greb the GC erqonomics to work for you and

kihow the defaulks
Tunables:

© Pause time goal, heap size, max and min nursery,
concurrent and parallel threads

o The marking threshold, number of mixed GCs
after marking, Liveness threshold for the old
regions, qarbage toleration threshold, max old
regions to be collected per mixed collection

109 ©R0o15 CodeKaram

GC Tuneables - The G1
Collector

Things to remember -
 Know your defaults!

e Understand your G1HeapRegionSize - It could be any factor of
two from 1MB to 32MB. G1 strives for 2048 regions.

e Fixing the nursery size (using Xmn) will meddle with the GC
ergonomics/adaptiveness.

* Don't set really aggressive pause time goals - this will increase the
GC overhead.

e Spend time taming your mixed GCs - mixed GCs are incremental
collections

110 ©Ro15 CodeKaram

GC Tuneables - The G1
Collector

Things to remember -
e Taming mixed GCs:
* Adjust the marking cycle according to you live data set.

« Adjust you liveness threshold - this is the live occupancy threshold
per region. Any region with liveness beyond this threshold will not
be included in a mixed collection.

« Adjust your garbage toleration threshold - helps G1 not get too
aggressive with mixed collections

 Distribute mixed GC pauses over a number of mixed collections -
adjust your mixed GC count target and change your max old region
threshold percent so that you can limit the old regions per collection

1 ©2015 CodeKaram

Further Reading

Charlie Hunt * Binu John

A
Forewords by James Gosling and Steve Wilson N

Java
Performance

The Java Series

112 ©R015 CodeKaram

Further Reading

Jon Masa’s blog: https://blogs.oracle.com/
jonthecollector/entry/our_collectors

A few of my articles on InfoQ: hitp://
www.infog.com/author/Monica-Beckwith

Presentations: http://www.slideshare.net/
MonicaBeckwith

Mail archives on hotspot-gc-use@openjdk.java.net
& hotspot-gc-dev@openjdk.java.net

113 ©2015 CodeKaram

http://blogs.oracle.com/jonthecollector/entry/our_collectors
http://www.infoq.com/author/Monica-Beckwith
http://www.slideshare.net/MonicaBeckwith
mailto:hotspot-gc-use@openjdk.java.net
mailto:hotspot-gc-dev@openjdk.java.net

Performance Analysis

« Monitoring: System Under Load

« Utilization - CPU, 10, Sys/ Kernel, Memory bandwidth, Java
heap, ...

e Lock statistics
* Analyzing:

 Utilization and time spent - GC logs, CPU, memory and
application logs

* Profiling:
* Application, System, Memory - Java Heap.

115 ©Ro18 CodeKaram

JVM Performance
Engineering

Java/JVM performance engineering includes the
study, analysis and tuning of the Just-in-time (JIT)
compiler, the Garbage Collector (GC) and many a

times tuning related to the Java Development Kit
(JDK).

116 ©2015 CodeKaram

GC Performance
Engineering

e Monitor the JVM - Visual VM

 Monitor and collect GC information - Visual GC
(online), GC logs (offline)

* Develop scripts to process GC logs; use GC
Histo and JFreeCharts to plot your GC logs or
use specialized tools/ log analyzers that
SErves your purpose.

117 ©2015 CodeKaram

What have we learned so far? -
Young Generation & Collections

e Young generation is always collected in its entirety.

e All 3 server GCs discussed earlier follow similar
mechanism for young collection. *

* The young collections achieve reclamation via
compaction and copying of live objects.

* There are a lot of options for sizing the Eden and
Survivor space optimally and many GCs also have
adaptive sizing and GC ergonomics for young
generation collections.

119 ©R0o18 CodeKaram

What have we learned so far”?
- Old Generation & Collections

All 3 server GCs vary in the way they collect the old generation:

* For ParallelOld GC, the old generation is reclaimed and
compacted Iin its entirety

* Luckily, the compaction cost is distributed amongst parallel
garbage collector worker threads.

* Unluckily, the compaction cost depends a lot on the make of
the live data set since at every compaction, the GC is moving
ive data around.

* No tuning options other than the generation size adjustment
and age threshold for promotion.

120 ©Ro15 CodeKaram

What have we learned so far”?
- Old Generation & Collections

 For CMS GC, the old generation is (mostly) concurrently marked
and swept. Thus the reclamation of dead objects happen in place

and the space is added to a free list of spaces.

 The marking threshold can be tuned adaptively and manually as
well.

e Luckily, CMS GC doesn’t do compaction, hence reclamation is fast.

« Unluckily, a long running Java application with CMS GC is prone to
fragmentation which will eventually result in promotion failures
which can eventually lead to full compacting garbage collection
and sometimes even concurrent mode failures.

« Full compacting GCs are singled threaded in CMS GC.

121 ©ro185 CodeKaram

What have we learned so far”?
- Old Generation & Collections

 For G1 GC, the old generation regions are (mostly) concurrently marked and
an incremental compacting collection helps with optimizing the old generation
collection.

» Luckily, fragmentation is not “untunable” in G1 GC as it is in CMS GC.

« Unluckily, sometimes, you may still encounter promotion/evacuation failures
when G1 GC runs out of regions to copy live objects. Such an evacuation
failure is expensive and can eventually lead to a full compacting GC.

e Full compacting GCs are singled threaded in G1 GC.

» Appropriate tuning of the old generation space and collection can help
avoid evacuation failures and hence keep full GCs at bay.

51 GC has multiple tuning options so that the GC can be adapted to your
application needs.

122 ©2015 CodeKaram

