
GC Tuning Confessions
Of A Performance

Engineer

Monica Beckwith
monica@codekaram.com

@mon_beck
www.linkedin.com/in/monicabeckwith

JavaOne Conference
Oct. 26th, 2015

mailto:monica@codekaram.com
https://twitter.com/mon_beck
http://www.linkedin.com/in/monicabeckwith

©2015 CodeKaram

About Me

• JVM/GC Performance Engineer/Consultant

• Worked at AMD, Sun, Oracle…

• Worked with HotSpot JVM

• JVM heuristics, JIT compiler, GCs:
Parallel(Old) GC, G1 GC, CMS GC

2

©2015 CodeKaram

About Today’s Talk
• A little bit about Performance Engineering

• Insight into Garbage Collectors

• OpenJDK HotSpot GCs

• The Tradeoffs

• GC Algorithms

• Key Topics

• Summary

• GC Tuneables

3

Performance
Engineering

4

©2015 CodeKaram

Performance Engineering

5

Requirements

Design
Performance

Requirements & Test
Plan & Development

Implementation
Performance

Analysis

©2015 CodeKaram

Performance Requirements

• Service level agreements (SLAs) for:

• throughput,

• latency and other response time related
metrics E.g. Response time (RT) metrics -
Average (RT), max or worst-case RT, 99th
percentile RT…

6

©2015 CodeKaram

Response Time Metrics
Number of GC

events Minimum (ms)

System1 37353 7.622

System2 34920 7.258

System3 36270 6.432

System4 40636 7.353

7

©2015 CodeKaram

Number of GC
events Minimum (ms) Average (ms)

System1 37353 7.622 307.741

System2 34920 7.258 320.778

System3 36270 6.432 321.483

System4 40636 7.353 323.143

8

Response Time Metrics

©2015 CodeKaram

Number of
GC events

Minimum
(ms)

Average
(ms)

99th
Percentile

(ms)

System1 37353 7.622 307.741 940.901

System2 34920 7.258 320.778 1006.607

System3 36270 6.432 321.483 1004.018

System4 40636 7.353 323.143 1041.225

9

Response Time Metrics

©2015 CodeKaram

Number
of GC
events

Minimum
(ms)

Average
(ms)

99th
Percentile

(ms)

Maximum
(ms)

System
1 37353 7.622 307.741 940.901 3131.331

System
2 34920 7.258 320.778 1006.607 2744.588

System
3 36270 6.432 321.483 1004.018 1681.308

System
4 40636 7.353 323.143 1041.225 20699.505

10

Response Time Metrics

©2015 CodeKaram

Average (ms)
99th

Percentile
(ms)

Maximum
(ms)

System1 307.741 940.901 3131.331

System2 320.778 1006.607 2744.588

System3 321.483 1004.018 1681.308

System4 323.143 1041.225 20699.505

5 full GCs and 10 evacuation failures

11

Response Time Metrics

Insight into GCs

12

©2015 CodeKaram

Fun Facts!

• GC can NOT eliminate your memory
leaks!

• GC (and heap dump) can provide an
insight into your application.

13

©2015 CodeKaram

Ideal GC?

Maximize Throughput

14

©2015 CodeKaram

Ideal GC?

Maximize Throughput
Minimize Latency

15

©2015 CodeKaram

Ideal GC?

Maximize Throughput
Minimize Latency
Minimize Footprint

16

©2015 CodeKaram

The Reality!

Pick Any Two! :(

17

OpenJDK HotSpot
GCs: The TRADE/OFF

18

©2015 CodeKaram

Fun Fact!

Most OpenJDK HotSpot users would like to
increase their (Java) heap space but they

fear full garbage collections.

19

©2015 CodeKaram

The Tradeoff -

• Throughput and latency are the two main drivers
towards refinement of GC algorithms.

20

©2015 CodeKaram

The Throughput Maximizer

21

Maximize
Throughput

Generational

Old

Parallel Work

Young Concurrent
Threads

Stop-the-
world

Threads

©2015 CodeKaram

Fun Fact!

All GCs in OpenJDK HotSpot are
generational.

22

©2015 CodeKaram

Mr. Latency Sensitive

23

Latency Sensitive

No/Partial
Compaction

Concurrency

Garbage First
Mostly

Concurrent
Mark and Sweep

©2015 CodeKaram

Fun Fact!

All GCs in OpenJDK HotSpot fallback to a
fully compacting stop-the-world garbage

collection called the “full” GC.

Tuning can help avoid or postpone full GCs in
many cases.

24

OpenJDK HotSpot
GCs: Algorithms

25

©2015 CodeKaram

The Generational Java Heap

Eden S0 S1 Old Generation

Young Generation

Allocations Survivors

Tenured

26

©2015 CodeKaram

OpenJDK HotSpot
Collectors

*Similar GC
Algorithms

Different GC Algorithms

Always collected in its entirety

27

©2015 CodeKaram

The Serial Collector

Single Threaded
Single Threaded - Entire
Heap Marked, Swept and
Compacted in its entirety

Always collected in its entirety

28

©2015 CodeKaram

Young GC
Thread

Java
Application
Threads

Old GC
Thread

Java
Application
Threads

Java
Application
Threads

The Serial Collector

29

©2015 CodeKaram

The Throughput Collector

Multi-Threaded
Multi-Threaded - Entire
Heap Marked, Swept and
Compacted in its entirety

Always collected in its entirety

30

©2015 CodeKaram

Young GC
Threads

Java
Application
Threads

Old GC
Threads

Java
Application
Threads

Java
Application
Threads

The Throughput Collector

31

©2015 CodeKaram

The CMS Collector

Multi-Threaded
Multi-Threaded - Mostly
Concurrent Marked and

Swept in its entirety

Always collected in its entirety

32

©2015 CodeKaram

The CMS Collector
Young
GC

Threads

CMS
Initial
Mark

Threads

Java
Application
Threads

Young
GC

Threads

CMS
Remark
Threads

Concurrent
CMS Threads

33

Concurrent
CMS Threads

Concurrent
CMS Threads

Java
Application
Threads

Java
Application
Threads

Java
Application
Threads

Java
Application
Threads

GC Algorithms - Key
Topics

34

35

What Triggers Full (Fail-Safe)
Collections?

Promotion
Failures!

36

Promotion Failures In The
Throughput Collector

37

©2015 CodeKaram

The Throughput Collector -
Java Heap

Eden S0 S1 Old Generation

Young Generation

Allocations Survivors

Tenured

38

©2015 CodeKaram

Old Generation

Free Space

Occupied Space

The Throughput Collector -
Contiguous Old Generation

39

©2015 CodeKaram

Old Generation

To-be Promoted Object 1

The Throughput Collector -
Contiguous Old Generation

40

©2015 CodeKaram

The Throughput Collector -
Contiguous Old Generation

41

Old Generation

Free Space

Occupied Space

©2015 CodeKaram

The Throughput Collector -
Contiguous Old Generation

42

Old Generation

To-be Promoted Object 2

©2015 CodeKaram

The Throughput Collector -
Contiguous Old Generation

43

Old Generation

Free Space

Occupied Space

©2015 CodeKaram

The Throughput Collector -
Contiguous Old Generation

44

Old Generation

To-be Promoted Object 3

©2015 CodeKaram

The Throughput Collector -
Contiguous Old Generation

45

Old Generation

Free Space

Occupied Space

Promotion Failures &
Concurrent Mode Failures

In The CMS Collector

46

©2015 CodeKaram

The CMS Collector - Old Generation
Maintained By Free Lists

47

Free List

Old Generation

Free Space

Occupied Space

©2015 CodeKaram

To-be Promoted Object 1

48

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram49

Free List

Old Generation

Free Space

Occupied Space

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram50

To-be Promoted Object 2

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram51

Free List

Old Generation

Free Space

Occupied Space

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram

X

52

To-be Promoted Object 3

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram

X

53

To-be Promoted Object 3

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram

X

54

To-be Promoted Object 3

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram

X

55

To-be Promoted Object 3

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram

??

56

To-be Promoted Object 3

Old Generation

The CMS Collector - Old Generation
Maintained By Free Lists

©2015 CodeKaram

Promotion Failure!!

57

To-be Promoted Object 3

Old Generation

The CMS Collector -
Fragmented Old Generation

©2015 CodeKaram

• Your old generation is getting filled before a
concurrent cycle can complete and free up
space.

• Fragmentation has crept in.

• Causes - marking threshold is too high, heap too
small, or high application mutation rate

58

The CMS Collector -
Concurrent Mode Failures

Incremental Compaction
In The G1 Collector

59

©2015 CodeKaram

The Garbage First Collector
- Regionalized Heap

Eden

Old Old

Eden

Old

Survivor

Humongous

60

©2015 CodeKaram

The Garbage First Collector

Eden

Old Old

Eden

Old

Surv
ivor

E.g.: Current heap configuration -

61

©2015 CodeKaram

The Garbage First Collector

Eden

Old Old

Eden

Old

Surv
ivor

E.g.: During a young collection -

62

©2015 CodeKaram

The Garbage First Collector

Old Old

Old

E.g.: After a young collection -

Sur
viv
or

Ol
d

63

©2015 CodeKaram

The Garbage First Collector

Old Old

Old

E.g.: Current heap configuration -

Sur
viv
or

Ol
d

Eden Eden

Old

64

©2015 CodeKaram

Old Old

Old

E.g.: Reclamation of a garbage-filled region
during the cleanup phase -

Sur
viv
or

Ol
d

Eden Eden

Old

The Garbage First Collector

65

©2015 CodeKaram

Old Old

Old

E.g.: Reclamation of a garbage-filled region
during the cleanup phase -

Sur
viv
or

Ol
d

Eden Eden

The Garbage First Collector

66

©2015 CodeKaram

Old Old

Old

E.g.: Current heap configuration -

Sur
viv
or

Ol
d

Eden Eden

The Garbage First Collector

67

©2015 CodeKaram

Old Old

Old

E.g.: During a mixed collection -

Sur
viv
or

Ol
d

Eden Eden

The Garbage First Collector

68

©2015 CodeKaram

Old

E.g.: After a mixed collection -

O
l
d

Sur
vivo
r

Old

The Garbage First Collector

69

Promotion/Evacuation
Failures In The G1

Collector

70

©2015 CodeKaram

• When there are no more regions available for
survivors or tenured objects, G1 GC encounters
an evacuation failure.

• An evacuation failure is expensive and the usual
pattern is that if you see a couple of evacuation
failures; full GC could* soon follow.

The Garbage First Collector
- Evacuation Failures

71

©2015 CodeKaram

A heavily tuned JVM command line
may be restricting the G1 GC
ergonomics and adaptability.

Start with just your heap sizes and a
reasonable pause time goal

The Garbage First Collector -
Avoiding Evacuation Failures

72

©2015 CodeKaram

Your live data set + long live
transient data may be too large for

the old generation

Check LDS+ and increase heap to
accommodate everything in the old
generation.

The Garbage First Collector -
Avoiding Evacuation Failures

73

©2015 CodeKaram

Initiating Heap Occupancy Threshold
could be the issue.

Check IHOP and make sure it accommodates
the LDS+.

IHOP threshold too high -> Delayed marking ->
Delayed incremental compaction -> Evacuation
Failures!

The Garbage First Collector -
Avoiding Evacuation Failures

74

©2015 CodeKaram

Marking Cycle could be taking too
long to complete?

Increase concurrent marking threads

Reduce IHOP

The Garbage First Collector -
Avoiding Evacuation Failures

75

©2015 CodeKaram

to-space survivors are the problem?

Increase the G1ReservePercent, if to-space
survivors are triggering the evacuation
failures!

The Garbage First Collector -
Avoiding Evacuation Failures

76

©2015 CodeKaram

fragmentation an issue?

The Garbage First Collector -
Avoiding Evacuation Failures

77

Fragmentation In The
G1 Collector

78

©2015 CodeKaram

• G1 GC is designed to “absorb” some
fragmentation.

• Default is 5% of the total Java heap

• Tradeoff so that expensive regions are left out.

G1 Heap Waste Percentage

79

©2015 CodeKaram

G1 Mixed GC (Region)
Liveness Threshold

80

• G1 GC’s old regions are also designed to
“absorb” some fragmentation.

• Default is 85% liveness in a G1 region.

• Tradeoff so that expensive regions are left out.

©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

81

An old generation region

A young generation region

©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

82

Object < 50% of
G1 region size

Object >= 50% of
G1 region size

Object > G1
region size

??

©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

83

Object < 50% of
G1 region size

©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

84

Object >= 50% of
G1 region size

©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

85

Object > G1
region size

©2015 CodeKaram

The Garbage First Collector
- Humongous Objects

86

Object NOT Humongous

Object Humongous

Object Humongous ->
Needs Contiguous Regions

Wasted
Space!

©2015 CodeKaram

Ideally, humongous objects are few in
number and are short lived.

A lot of long-lived humongous objects can
cause evacuation failures since humongous
regions add to the old generation occupancy.

The Garbage First Collector
- Humongous Objects

87

G1 GC Logs - Key
Topics

88

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

89

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

90

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

91

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

92

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

93

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

94

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

95

©2015 CodeKaram

G1 GC Log
154.431: [GC pause (G1 Evacuation Pause) (young), 0.2584864 secs]
 [Parallel Time: 253.2 ms, GC Workers: 8]
 [GC Worker Start (ms): Min: 154431.3, Avg: 154431.4, Max: 154431.5, Diff: 0.1]
 [Ext Root Scanning (ms): Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.1, Sum: 1.4]
 [Update RS (ms): Min: 3.3, Avg: 3.5, Max: 3.8, Diff: 0.6, Sum: 28.2]
 [Processed Buffers: Min: 3, Avg: 3.5, Max: 5, Diff: 2, Sum: 28]
 [Scan RS (ms): Min: 46.1, Avg: 46.4, Max: 46.7, Diff: 0.6, Sum: 371.2]
 [Code Root Scanning (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [Object Copy (ms): Min: 202.7, Avg: 202.8, Max: 202.9, Diff: 0.3, Sum: 1622.4]
 [Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.5]
 [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.1, Diff: 0.1, Sum: 0.6]
 [GC Worker Total (ms): Min: 253.0, Avg: 253.1, Max: 253.1, Diff: 0.1, Sum: 2024.7]
 [GC Worker End (ms): Min: 154684.5, Avg: 154684.5, Max: 154684.5, Diff: 0.1]
 [Code Root Fixup: 0.1 ms]
 [Code Root Purge: 0.0 ms]
 [Clear CT: 0.7 ms]
 [Other: 4.4 ms]
 [Choose CSet: 0.0 ms]
 [Ref Proc: 0.3 ms]
 [Ref Enq: 0.0 ms]
 [Redirty Cards: 0.3 ms]
 [Humongous Reclaim: 0.0 ms]
 [Free CSet: 3.2 ms]
 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors: 148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]
 [Times: user=1.72 sys=0.14, real=0.26 secs]

96

©2015 CodeKaram

Generation Sizing

 [Eden: 4972.0M(4972.0M)->0.0B(4916.0M) Survivors:
148.0M->204.0M Heap: 5295.8M(10.0G)->379.4M(10.0G)]

 [Eden: Occupancy before GC(Eden size before
GC)->Occupancy after GC(Eden size after GC)
Survivors: Size before GC->Size after GC Heap:
Occupancy before GC(Heap size before GC)-
>Occupancy after GC(Heap size after GC)]

97

©2015 CodeKaram

Heap Information Plot

98

O
cc

up
an

cy
 in

 M
Bs

0

7500

15000

22500

30000

TimeStamps

2500 3750 5000 6250 7500 8750 10000 11250 12500

Eden Occupancy Before GC Eden Size After GC
Survivor Size After GC Old Generation Occupancy After GC
Heap Occupancy Before GC Heap Size

©2015 CodeKaram

Scaling: GC Times vs Sys Times

[Times: user=1.72 sys=0.14, real=0.26 secs]

Scaling: user time/real time = 6.6

99

©2015 CodeKaram

Scaling: High Sys Times

100

Swapping?

IO?
Transparent huge
pages enabled??*

Sys memory
issues?

??

©2015 CodeKaram

Reference Processing Times
[Ref Proc: 0.3 ms]

Check for high time spent in ‘Ref Proc’.

Also, check your Remark pause times:

9.972: [GC remark 9.972: [Finalize Marking, 0.0007865 secs]
9.973: [GC ref-proc, 0.0027669 secs] 9.976: [Unloading,
0.0075832 secs], 0.0116215 secs]

If Remark pauses are high or increasing and if ‘ref-
proc’ is the major contributor - use: -XX:

+ParallelRefProcEnabled

101

©2015 CodeKaram

GC Overhead vs Elapsed
Time

Overhead is an indication of the frequency of
stop the world GC events.
The more frequent the GC events - The more
likely it is to negatively impact application

throughput

GC Elapsed Time indicated the amount of time it
takes to execute stop the world GC events
The higher the GC elapsed time - the lower the

application responsiveness due to the GC
induced latencies

102

Summary

103

©2015 CodeKaram

Most Allocations Eden Space
Eden Full? Start Young Collection: Keep Allocating :)

Objects Aged in Survivor Space? Promote: Keep Aging :)

Fast Path

Promotions Fast Path Old Generation

CMS promotes to fitting free space out of a free list.

What have we learned so
far?

104

©2015 CodeKaram

GC Tuneables - The
Throughput Collector

Goal:

Only promote objects after you have hazed them
appropriately

aged

Tunables:

Everything related to aging objects and
generation sizing -

NewRatio, (Max)NewSize, SurvivorRatio,
(Max)TenuringThreshold

105

©2015 CodeKaram

GC Tuneables - The
Throughput Collector

Things to remember -

• Applications with steady behavior rarely need
AdaptiveSizePolicy to be enabled.

• Overflow gets promoted into the old generation

• Provide larger survivor spaces for transient data.

• In most cases, young generation sizing has the most effect
on throughput

• Size the young generation to maintain the GC overhead to
less than 5%.

106

©2015 CodeKaram

GC Tuneables - The CMS
Collector

Goal:

Only promote objects after you have hazed them
appropriately

aged

Tunables:

Everything related to aging objects and young
generation sizing still applies here.

The concurrent thread counts and marking
threshold are addition tunables for CMS

107

©2015 CodeKaram

GC Tuneables - The CMS
Collector

Things to remember -

• Premature promotions are very expensive in CMS and could lead to
fragmentation

• You can reduce the CMS cycle duration by adding more concurrent
threads: ConcGCThreads.

• Remember that this will increase the concurrent overhead.

• You can manually tune the marking threshold (adaptive by default)

• CMSInitiatingOccupancyFraction & UseCMSInitiatingOccupancyOnly
will help fix the marking threshold.

• Note: The threshold is expressed as a percentage of the old generation
occupancy

108

©2015 CodeKaram

GC Tuneables - The G1
Collector

Goal:

Get the GC ergonomics to work for you and
know the defaults

Tunables:
• Pause time goal, heap size, max and min nursery,

concurrent and parallel threads

• The marking threshold, number of mixed GCs
after marking, liveness threshold for the old
regions, garbage toleration threshold, max old
regions to be collected per mixed collection

109

©2015 CodeKaram

GC Tuneables - The G1
Collector

Things to remember -

• Know your defaults!

• Understand your G1HeapRegionSize - It could be any factor of
two from 1MB to 32MB. G1 strives for 2048 regions.

• Fixing the nursery size (using Xmn) will meddle with the GC
ergonomics/adaptiveness.

• Don’t set really aggressive pause time goals - this will increase the
GC overhead.

• Spend time taming your mixed GCs - mixed GCs are incremental
collections

110

©2015 CodeKaram

GC Tuneables - The G1
Collector

Things to remember -

• Taming mixed GCs:

• Adjust the marking cycle according to you live data set.

• Adjust you liveness threshold - this is the live occupancy threshold
per region. Any region with liveness beyond this threshold will not
be included in a mixed collection.

• Adjust your garbage toleration threshold - helps G1 not get too
aggressive with mixed collections

• Distribute mixed GC pauses over a number of mixed collections -
adjust your mixed GC count target and change your max old region
threshold percent so that you can limit the old regions per collection

111

©2015 CodeKaram

Further Reading

112

©2015 CodeKaram

Further Reading
• Jon Masa’s blog: https://blogs.oracle.com/

jonthecollector/entry/our_collectors

• A few of my articles on InfoQ: http://
www.infoq.com/author/Monica-Beckwith

• Presentations: http://www.slideshare.net/
MonicaBeckwith

• Mail archives on hotspot-gc-use@openjdk.java.net
& hotspot-gc-dev@openjdk.java.net

113

http://blogs.oracle.com/jonthecollector/entry/our_collectors
http://www.infoq.com/author/Monica-Beckwith
http://www.slideshare.net/MonicaBeckwith
mailto:hotspot-gc-use@openjdk.java.net
mailto:hotspot-gc-dev@openjdk.java.net

Appendix

114

©2015 CodeKaram

Performance Analysis
• Monitoring: System Under Load

• Utilization - CPU, IO, Sys/ Kernel, Memory bandwidth, Java
heap, …

• Lock statistics

• Analyzing:

• Utilization and time spent - GC logs, CPU, memory and
application logs

• Profiling:

• Application, System, Memory - Java Heap.

115

©2015 CodeKaram

JVM Performance
Engineering

Java/JVM performance engineering includes the
study, analysis and tuning of the Just-in-time (JIT)
compiler, the Garbage Collector (GC) and many a
times tuning related to the Java Development Kit
(JDK).

116

©2015 CodeKaram

GC Performance
Engineering

• Monitor the JVM - Visual VM

• Monitor and collect GC information - Visual GC
(online), GC logs (offline)

• Develop scripts to process GC logs; use GC
Histo and JFreeCharts to plot your GC logs or
use specialized tools/ log analyzers that
serves your purpose.

117

Summary

118

©2015 CodeKaram

What have we learned so far? -
Young Generation & Collections
• Young generation is always collected in its entirety.

• All 3 server GCs discussed earlier follow similar
mechanism for young collection.

• The young collections achieve reclamation via
compaction and copying of live objects.

• There are a lot of options for sizing the Eden and
Survivor space optimally and many GCs also have
adaptive sizing and GC ergonomics for young
generation collections.

119

©2015 CodeKaram

All 3 server GCs vary in the way they collect the old generation:

• For ParallelOld GC, the old generation is reclaimed and
compacted in its entirety

• Luckily, the compaction cost is distributed amongst parallel
garbage collector worker threads.

• Unluckily, the compaction cost depends a lot on the make of
the live data set since at every compaction, the GC is moving
live data around.

• No tuning options other than the generation size adjustment
and age threshold for promotion.

120

What have we learned so far?
- Old Generation & Collections

©2015 CodeKaram

• For CMS GC, the old generation is (mostly) concurrently marked
and swept. Thus the reclamation of dead objects happen in place
and the space is added to a free list of spaces.

• The marking threshold can be tuned adaptively and manually as
well.

• Luckily, CMS GC doesn’t do compaction, hence reclamation is fast.

• Unluckily, a long running Java application with CMS GC is prone to
fragmentation which will eventually result in promotion failures
which can eventually lead to full compacting garbage collection
and sometimes even concurrent mode failures.

• Full compacting GCs are singled threaded in CMS GC.

What have we learned so far?
- Old Generation & Collections

121

©2015 CodeKaram

• For G1 GC, the old generation regions are (mostly) concurrently marked and
an incremental compacting collection helps with optimizing the old generation
collection.

• Luckily, fragmentation is not “untunable” in G1 GC as it is in CMS GC.

• Unluckily, sometimes, you may still encounter promotion/evacuation failures
when G1 GC runs out of regions to copy live objects. Such an evacuation
failure is expensive and can eventually lead to a full compacting GC.

• Full compacting GCs are singled threaded in G1 GC.

• Appropriate tuning of the old generation space and collection can help
avoid evacuation failures and hence keep full GCs at bay.

• G1 GC has multiple tuning options so that the GC can be adapted to your
application needs.

122

What have we learned so far?
- Old Generation & Collections

