
Writing Microservices in Java 

Given by Derek C. Ashmore 

October 28, 2015 

©2015 Derek C. Ashmore, All Rights Reserved 1 



Who am I? 
  

• Professional Geek 
since 1987 

• Java/J2EE/Java EE 
since 1999 

• Roles include: 
• Developer 

• Architect 

• Project Manager 

• DBA 

• System Admin 

 

©2015 Derek C. Ashmore, All Rights Reserved 2 

http://www.amazon.com/gp/product/0972954880/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0972954880&linkCode=as2&tag=dvtpresscom-20


Discussion Resources 

• This slide deck 
– http://www.slideshare.net/derekashmore 

• Sample code on my Github 
– https://github.com/Derek-Ashmore/ 

• Sample Java Microservice (Moneta) 
– https://github.com/Derek-Ashmore/moneta 

• Slide deck has hyper-links! 

– Don’t bother writing down URLs 

 

©2015 Derek C. Ashmore, All Rights Reserved 3 

http://www.slideshare.net/derekashmore
http://www.slideshare.net/derekashmore
https://github.com/Derek-Ashmore/
https://github.com/Derek-Ashmore/
https://github.com/Derek-Ashmore/
https://github.com/Derek-Ashmore/
https://github.com/Derek-Ashmore/moneta
https://github.com/Derek-Ashmore/moneta
https://github.com/Derek-Ashmore/moneta
https://github.com/Derek-Ashmore/moneta


Agenda 

The “What” 
and “Why” of 
microservices 

Design 
Considerations 

and Patterns 

Cross-cutting 
concerns 

When to use 
microservices 

Summary / 
Q&A 

©2015 Derek C. Ashmore, All Rights Reserved 4 



What are Microservices? 

• No concrete definition 

• Common microservice traits 

– Single functional purpose 

• Most/all changes only impact one service 

• Not dependent on execution context  
– “loosely coupled” 

– Independent process/jvm  

– Standard Interface (typically Web Service/REST) 

– Analogy:  Stereo system, Linux utilities 

 
©2015 Derek C. Ashmore, All Rights Reserved 5 



Refactoring into Microservices 

• Databases 
physically 
separated 

• What to do with 
common data 
needs? 

• Service call or 

• Data copy 

©2015 Derek C. Ashmore, All Rights Reserved 6 



No Lock-in 
• Platform agnostic 

• Fewer dependency 
conflicts 

• Still have cross-cutting 
concerns 

• “Toll” for first app 

• Still have support 
concerns 

• Others need to be 
able to support your 
work 

 

7 ©2015 Derek C. Ashmore, All Rights Reserved 



Easier Management /  
Higher Throughput 

• Easier to manage large 
numbers of developers 
– Concentrate on 

intelligently drawing 
service boundaries 

– Manage/enforce service 
contracts 

• Each service team works 
independently 

• Team independence leads 
to higher development 
throughput 

©2015 Derek C. Ashmore, All Rights Reserved 8 



Agenda 

The “What” 
and “Why” of 
microservices 

Design 
Considerations 

and Patterns 

Cross-cutting 
concerns 

When to use 
microservices 

Summary / 
Q&A 

©2015 Derek C. Ashmore, All Rights Reserved 9 



Design considerations 

• Service Boundaries (gerrymandering) 

• Service call Failure / Unavailability 

• Data Integrity 

• Performance 

©2015 Derek C. Ashmore, All Rights Reserved 10 



Service Boundaries 

• Core Services 
– Services responsible for maintaining a specific business area data 
– Usually named after Nouns 

• Service is a system of record for a <blank> 
– Student, Course, Classroom, etc. 

• Process Services 
– Services responsible for performing single complex tasks 
– Usually represents an Action or Process 

• Service is responsible for processing <blank> 
– Student applications, Debt collection, etc. 

– These services rely on core services 

• Partitioning is an art 
– Too few  same drawbacks as traditional architecture 
– Too many  excessive network hops 

©2015 Derek C. Ashmore, All Rights Reserved 11 



Boundary Sanity Check 

• Verbalize a mission statement in one sentence 
in business terms 

– Examples 

• This service is the system of record for Student 
information 

• This service registers students for classes 

• This service suspends students 

• This service records student payments 

• This service produces official transcripts 

©2015 Derek C. Ashmore, All Rights Reserved 12 



Context Independence Check 

• Does your service have multiple consumers? 
– Could it? 

• Could your service execute as easily in batch as 
online? 
– If ‘No’, then you’re making context assumptions 

• Warning Signs 
– Spending time analyzing service call flow 

• Your services likely make context assumptions 

– Agonizing over which service should do a given 
activity 
• Maybe you need a new service 

©2015 Derek C. Ashmore, All Rights Reserved 13 



Microservices are not about size 

©2015 Derek C. Ashmore, All Rights Reserved 14 

….. Microservices are about having a single business purpose! 



Designing for Failure 

• Dependent services could be down 
– Minimize human intervention 

– Fail sooner rather than later 

– Horizontal scaling / clustering is your first line of defense 

– Coding patterns can help as a backup 

• Common Patterns: 
– Retry 

– Circuit Breaker 

– Dispatch via Messaging 

– Service Call Mediator 

©2015 Derek C. Ashmore, All Rights Reserved 15 



Retry Pattern 

©2015 Derek C. Ashmore, All Rights Reserved 16 

• Best for asynchronous tasks 
• Limit the number of tries 
• Use sleep interval between tries 
• Only addresses temporary outages 
• Sample Retry Pattern implementation here. 
• Tooling Support: 

– Apache CXF supports Retry 
– Spring Batch RetryTemplate 
– Apache HttpClient (Example here) 

https://github.com/Derek-Ashmore/Insanity
http://cxf.apache.org/docs/failoverfeature.html
http://docs.spring.io/spring-batch/trunk/reference/html/retry.html
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/fundamentals.html#d5e303


Circuit Breaker 

©2015 Derek C. Ashmore, All Rights Reserved 17 



Circuit Breaker (continued) 

• Objective:  Error out sooner 
– Conserves resources 
– Automatically “recovers” after a time period 

• Modeled after home circuit 
• Works on thresholds 

– Number of errors required to trip circuit 
– Amount of time required to attempt retry 

• Has Hysterix support 
• Best embedded in interface clients / delegates 
• More information here. 
• Sample Circuit implementation here. 

©2015 Derek C. Ashmore, All Rights Reserved 18 

https://github.com/Netflix/Hystrix/wiki/How-it-Works#circuit-breaker
https://github.com/Netflix/Hystrix/wiki/How-it-Works#circuit-breaker
http://martinfowler.com/bliki/CircuitBreaker.html
https://github.com/Derek-Ashmore/CircuitBreaker


Dispatch via Messaging 

©2015 Derek C. Ashmore, All Rights Reserved 19 

• Place work instruction on persistent queue 
• If receivers are down, work stacks in queue 
• Work throttled by number of receivers 
• Queue can be JMS or AMQP 
• Tooling Support: 

– JMS Api (easy API – many use natively) 
– Spring JMSTemplate  or RabbitTemplate (producer) 

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/jms.html
http://docs.spring.io/spring-amqp/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html
http://docs.spring.io/spring-amqp/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html


Service Call Mediator 

©2015 Derek C. Ashmore, All Rights Reserved 20 

• Provide “Partial” functionality when dependent 
services are down 

• Providing partial functionality better user 
experience than complete outage 
– Airline Wifi provider providing service even if payment 

processing is down 

• Sample implementation here 

https://github.com/Derek-Ashmore/TaskMediator


Designing for Performance 

• More network traffic 

– Make services course-grained 

– User Interfaces need a general manager 

– Horizontal or Vertical Scaling helps 

• Common Patterns: 

– Back-ends for Front-ends (a.k.a. API Gateway) 

– Dispatch via Messaging 

– Expiring Cache 

©2015 Derek C. Ashmore, All Rights Reserved 21 



Back-ends for Front-ends 

©2015 Derek C. Ashmore, All Rights Reserved 22 



Back-ends for Front-ends 
(continued) 

• Consolidates service calls for the browser 

– Enhances performance 

• Open web often not as performant as local LAN 

• Also known as “API Gateway” 

• Implications 

– Don’t expose microservices directly to the 
browser 

©2015 Derek C. Ashmore, All Rights Reserved 23 



Expiring Cache 

©2015 Derek C. Ashmore, All Rights Reserved 24 



Expiring Cache (continued) 

• Look up data once and cache it 
– Evict data from the cache after a defined time period 
– Sometimes known as “Cache Aside” 
– Reduces network calls for data 
– Trades memory for speed 
– More information here 

• When to use 
– Only use with static data 
– Different clustered nodes “could” have different data for a short 

time 

• Tooling Support: 
– I recommend Google Guava 
– EHCache, Gemfire, and other tools available 

 
©2015 Derek C. Ashmore, All Rights Reserved 25 

https://msdn.microsoft.com/en-us/library/dn589799.aspx
https://code.google.com/p/guava-libraries/wiki/CachesExplained


Designing for Integrity 

• Services are context independent 

– Have no knowledge of how/when they are executed 

• One service == One Transaction 

– Two-phase commits/rollbacks are a much larger problem 

• Common Patterns: 

– Custom Rollback 
• Write your own reversing transaction 

©2015 Derek C. Ashmore, All Rights Reserved 26 



Custom Rollback 

©2015 Derek C. Ashmore, All Rights Reserved 27 



Custom Rollback (continued) 

• Reverses a transaction previously posted 

• Only use this for multi-service transactions 

– Keeping the transaction within one service is 
preferred 

• This pattern is completely custom 

– No special product support available 

• More information here 

 

©2015 Derek C. Ashmore, All Rights Reserved 28 

https://msdn.microsoft.com/en-us/library/dn589799.aspx


Common code between services? 

• Yes, but…. 

– Version it; services make decision as to when to 
upgrade 

– Changes to common code can’t require the 
deployment of multiple services 

• That ‘common code’ needs to be its own separate 
service 

• Tends *not* to have business logic as that can change 
and impact multiple services 

©2015 Derek C. Ashmore, All Rights Reserved 29 



Agenda 

The “What” 
and “Why” of 
microservices 

Design 
Considerations 

and Patterns 

Cross-cutting 
concerns 

When to use 
microservices 

Summary / 
Q&A 

©2015 Derek C. Ashmore, All Rights Reserved 30 



Cross-cutting Concerns 

• Deployment 

• Transaction tracking 

• Security 

• Contract Testing 

• Same as traditional applications 

– Health checks  

– Logging consolidation  

– Performance measurement  

 

 
©2015 Derek C. Ashmore, All Rights Reserved 31 



Deployment 

• Microservices are deployed as a process 

– For Java, embedded containers are easy 

– Spring Boot 

– Dropwizard 

• Docker – standardizes the process deployment 
and environment 

• Sample here. 

©2015 Derek C. Ashmore, All Rights Reserved 32 

http://projects.spring.io/spring-boot/
http://www.dropwizard.io/
https://www.docker.com/
https://github.com/Derek-Ashmore/moneta


Correlation IDs 
• Provides context for 

service calls or user 
actions 

• Track using HTTP 
Header 

• Log it on all messages / 
error reports 

• Include it on all service 
calls or message 
dispatches 

• Code sample here 

• Spring Boot support has 
been requested 

 

33 ©2015 Derek C. Ashmore, All Rights Reserved 

https://github.com/Derek-Ashmore/RequestCorrelationSlf4J
https://github.com/spring-projects/spring-boot/issues/2343


Security 

©2015 Derek C. Ashmore, All Rights Reserved 34 



Security (continued) 

• Keep User-level security to the UI 

• Microservice security in layers 

– Layer 1 – Network routing enforcement 

• Limit access only to within the firewall 

• Limit access to specific hosts or subnets 

– Layer 2 – Use Service Accounts 

• Similar to database access 

©2015 Derek C. Ashmore, All Rights Reserved 35 



Contract Testing 

• Critical for MS architectures 
– Contract changes can break other services 

– Bulkhead for rogue developers 

– Makes individual services more disposable 

• Consumer-based testing 

• Tooling support 
– Apache HttpClient 

– SoapUI 

– ActiveMQ for JMS (embedded broker) 

 
©2015 Derek C. Ashmore, All Rights Reserved 36 

http://hc.apache.org/httpcomponents-client-4.4.x/index.html
http://www.soapui.org/
http://activemq.apache.org/how-to-unit-test-jms-code.html
http://activemq.apache.org/how-to-unit-test-jms-code.html


Agenda 

The “What” 
and “Why” of 
microservices 

Design 
Considerations 

and Patterns 

Cross-cutting 
concerns 

When to use 
microservices 

Summary / 
Q&A 

©2015 Derek C. Ashmore, All Rights Reserved 37 



When to consider MS 

• Starting out with MS isn’t recommended unless 
– Parts of the application will have extremely high volume 

• Need to scale a portion of the application differently 

• Note:  MS isn’t all or nothing! 

• Warning signs for app that’s too large 
– Unintended consequences after release 

– High technical debt / design rot 

– Release testing cycles abnormally large 

– Need to coordinate large numbers of developers for a 
single code base 
• Large number == takes more than two pizzas to feed 

 
©2015 Derek C. Ashmore, All Rights Reserved 38 



Common Mistakes 

• Inappropriate Service Boundries 
– Services that are not truly loosely coupled 

• One change  Multiple services deployed 

– Services that make ‘assumptions’ about execution 
context 
• Deployments cause unintended consequences 

• Not recording all requests/responses 
– Support developers need to localize problems 

– Include request/response data in exceptions 
• Contexted Exceptions in Commons Lang 

©2015 Derek C. Ashmore, All Rights Reserved 39 

https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/exception/ContextedRuntimeException.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/exception/ContextedRuntimeException.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/exception/ContextedRuntimeException.html


Common Mistakes (continued) 

• Not checking arguments up front 
– Derivative exceptions take longer to debug/fix 

– NullPointerException == Argument not checked! 

• No Change in Governance 
– Easier / quicker path to production 

– Automated Deployments/Backouts 
• Less manual intervention 

• Less manual testing (quick reaction vs prevention) 

– Continuous Delivery / DevOps / Microservices go 
hand-in-hand 

©2015 Derek C. Ashmore, All Rights Reserved 40 



Further Reading 

• Microservices reading list 
– http://www.mattstine.com/microservices 

• Microsoft’s Cloud Design Patterns 
– https://msdn.microsoft.com/en-us/library/dn600223.aspx 

• Moneta Java microservice example 
– https://github.com/Derek-Ashmore/moneta 

• This slide deck 
– http://www.slideshare.net/derekashmore 

©2015 Derek C. Ashmore, All Rights Reserved 41 

http://www.mattstine.com/microservices
http://www.mattstine.com/microservices
https://msdn.microsoft.com/en-us/library/dn600223.aspx
https://msdn.microsoft.com/en-us/library/dn600223.aspx
https://msdn.microsoft.com/en-us/library/dn600223.aspx
https://msdn.microsoft.com/en-us/library/dn600223.aspx
https://github.com/Derek-Ashmore/moneta
https://github.com/Derek-Ashmore/moneta
https://github.com/Derek-Ashmore/moneta
https://github.com/Derek-Ashmore/moneta
http://www.slideshare.net/derekashmore
http://www.slideshare.net/derekashmore


Questions? 

• Derek Ashmore: 
– Blog: www.derekashmore.com 

– LinkedIn: www.linkedin.com/in/derekashmore 

– Twitter: https://twitter.com/Derek_Ashmore 

– GitHub: https://github.com/Derek-Ashmore 

– Book: http://dvtpress.com/  

©2015 Derek C. Ashmore, All Rights Reserved 42 

http://www.derekashmore.com/
http://www.linkedin.com/in/derekashmore
https://twitter.com/Derek_Ashmore
https://twitter.com/Derek_Ashmore
https://github.com/Derek-Ashmore
https://github.com/Derek-Ashmore
https://github.com/Derek-Ashmore
https://github.com/Derek-Ashmore
https://github.com/Derek-Ashmore
http://dvtpress.com/
http://dvtpress.com/
http://dvtpress.com/
http://www.amazon.com/gp/product/0972954880/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0972954880&linkCode=as2&tag=dvtpresscom-20

