
what’s in the work?

CDI 2.0

@antoine_sd @JosePaumard#CDI2

Agenda

 Flashback on CDI 1.0, 1.1 and 1.2

 CDI 2.0 status

 Gathering feedback for CDI 2.0

 CDI 2.0 new features

 Questions and Feedback

Previously on CDI

CDI Timeline

Dec 2009 June 2013 Apr 2014 Sep 2014 2016

@antoine_sd @JosePaumard#CDI2

CDI 1.0 – December 2009

 A typesafe dependency injection mechanism

 A well-defined lifecycle for stateful objects

 The ability to decorate or to associate interceptors to

objects with a typesafe approach

 An event notification model

 An SPI allowing portable extensions

@antoine_sd @JosePaumard#CDI2

CDI 1.1 – June 2013

 CDI is automatically enabled in Java EE

 Introspection with bean, events, decorator and

interceptor metadata

 Ease access to CDI from non CDI code

 Work on interceptor for reuse by other Java EE specs

 SPI enhancement for portable extensions

@antoine_sd @JosePaumard#CDI2

CDI 1.2 – April 2014

 Clarifications in the spec
• Lifecycles

• Events

• Conversation scope

 Fix conflict with other JSR 330 frameworks

 OSGi support in the API

@antoine_sd @JosePaumard#CDI2

CDI 2.0 started 12 months ago

 JSR 365!
• First Java EE 8 JSR proposed and voted

 Weekly IRC meeting

 Regular release of Weld 3.0 Alpha (CDI 2.0 RI)

 We have a lot of community momentum

 Early Draft is around the corner

 Release expected in 2016 (Q2?)

@antoine_sd @JosePaumard#CDI2

EG members

 Pete Muir (Red Hat)

 Antoine Sabot-Durand (Red Hat)

 José Paumard

 John Ament

 David Currie (IBM)

 Anatole Tresch (Credit Suisse)

 Antonio Goncalves

 Thorben Janssen

 Raj. Hegde (JUG Chennai)

 Werner Keil

 Joseph Snyder (Oracle)

 Mark Paluch

 Florent Benoit (SERLI)

 Mark Struberg

 David Blevins (Tomitribe)

 George Gastaldi (Red Hat)

 Otavio Santana

@antoine_sd @JosePaumard#CDI2

We are open to the community!

@antoine_sd @JosePaumard#CDI2

Gathering

feedback for CDI

2.0

@antoine_sd @JosePaumard#CDI2

CDI 2.0 survey

260 participants

20 features to rate

@antoine_sd @JosePaumard#CDI2

Who answered?

69%

22%

9%

developer advanced developer framework developer

@antoine_sd @JosePaumard#CDI2

Who answered?

77%

15%

8%

Plain Java EE Servlet container Java SE

@antoine_sd @JosePaumard#CDI2

1st feature

 Asynchronous support

for events and method invocation

@antoine_sd @JosePaumard#CDI2

Other top requested features

 @Startup for CDI

 Bootstraping outside of Java EE

 AOP for custom beans

 Security support

 Observers ordering, better event control

 Access to metadata through SPI

CDI 2.0 new features

Java SE support

Using CDI outside of the

Java EE Container

@antoine_sd @JosePaumard#CDI2

Why that?

 To ease the testing of CDI applications

 To provide a mean of building new stacks

out of Java EE

 To boost CDI adoption for Spec working

already on Java SE

 First step before working on a CDI light

@antoine_sd @JosePaumard#CDI2

Java SE support will start in EDR1

 We specified API to boot CDI in Java SE:

 Desktop and non Java EE application can now use a

standard way to boot CDI

public static void main(String... args) {

CDIProvider provider = CDI.getCDIProvider();
CDI<Object> cdi = provider.initialize();
// retrieve a bean and do work with it
MyBean myBean = cdi.select(MyBean.class).get();
myBean.doWork();
// when done
cdi.shutdown();

}

@antoine_sd @JosePaumard#CDI2

What did we do?

CDI Specification

CDI Core
CDI for Java

EE

CDI for Java

SE

@antoine_sd @JosePaumard#CDI2

There’s still work to do

 What about built-in contexts activation in Java SE?
• RequestScope

• SessionScope

• ConversationScope

@antoine_sd @JosePaumard#CDI2

There’s still work to do

 What about bean discovery in Java SE?

 Annotated mode can be very costly

 Implicit bean archive even more (support is disable

now)

 What about support of multiple container in Java SE?

Modularity

Provide sub specs in CDI (called parts)

that can be used independently

Each part should have an implementation

@antoine_sd @JosePaumard#CDI2

Why that?

 To avoid the “bloated spec” syndrom

 Having parts will help CDI adoption

 Third party won’t have to implement

the whole spec if they don’t want to

@antoine_sd @JosePaumard#CDI2

Full CDI

- Events

- Normal scopes

- Interceptor & Decorator

- Advanced SPI

Modularity – 2 core parts

CDI Light

- Basic DI

- Producers

- Programmatic lookup

- Singleton and dependent scopes

- Basic SPI for integration

@antoine_sd @JosePaumard#CDI2

Modularity – challenges

 Will bring 4 subspec:
• CDI light for Java SE

• CDI full for Java SE

• CDI light for Java EE

• CDI full for Java EE

 Having an RI and TCK for each part can be an

important work

Enhancing events

Making a popular feature

even more popular!

@antoine_sd @JosePaumard#CDI2

Enhancing Events

 CDI events are a very loved feature!

For CDI 2.0, we plan to introduce :

 Asynchronous events

 Events ordering

@antoine_sd @JosePaumard#CDI2

Events in CDI 1.x: patterns

 Firing pattern:

@Inject
Event<Payload> event;

public void someCriticalBusinessMethod() {

event.fire(new Payload());
}

@antoine_sd @JosePaumard#CDI2

Events in CDI 1.x: patterns

 Observing pattern:

 Supports qualifiers and many other things

public void callMe(@Observes Payload payload) {

// Do something with the event
}

@antoine_sd @JosePaumard#CDI2

CDI 1.x: Sync / Async

 Sync / Async is not specified

 The immutable status of the payload is not specified

 Implementations use a Sync model

 The payload is mutated in some implementations /

framework

 Going async “blindly” might raise problems…

@antoine_sd @JosePaumard#CDI2

Events are sync in CDI 1

Right now:

 All the observers are called in the firing thread

 In no particular order (at least not specified)

 The payload may be mutated

@antoine_sd @JosePaumard#CDI2

Events and contexts

Contexts

 Two contexts are critical: transactions and HTTP

requests / sessions

 Events are aware of those contexts

 In an all-sync world, everything is fine

 But in an async world, we will be in trouble

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 So designing backward compatible async events is more

tricky than it looks:

1) A currently sync event should remain sync

2) Going sync / async should be a decision taken

from the firing side

3) Being sync should be possible from the observing side

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 Pattern for the firing side:

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());
}

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 Pattern for the observing side:

public void callMe(@Observes Payload payload) {

// I am called in the firing thread
// Whether is was async fired or not

}

public void callMe(@ObservesAsync Payload payload) {

// I am called in another thread
}

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 So, in a nutshell

callMe(
@Observes payload)

callMe(
@ObservesAsync payload)

event
.fire(payload) Sync call Not notified

event
.fireAsync(payload) Not notified Async call

@antoine_sd @JosePaumard#CDI2

What about mutable payloads?

 One short answer:

 Don’t do it!

 Or suffer the full penalty of race conditions!

@antoine_sd @JosePaumard#CDI2

We have some more

 Let us come back to this pattern:

 1st question: in what thread are the observers going to

be called?

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());
}

@antoine_sd @JosePaumard#CDI2

We have some more

 Let us come back to this pattern:

 2nd question: what if exceptions are thrown by the

observers?

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());
}

@antoine_sd @JosePaumard#CDI2

Adding an Executor to fireAsync

 What if the observer needs to be called in the GUI

thread?

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new PanelUpdater(green),
executor); // Of type Executor

}

@antoine_sd @JosePaumard#CDI2

Adding an Executor to fireAsync

 What if the observer needs to be called in the GUI

thread?

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new PanelUpdater(green),
SwingUtilities::invokeLater);

}

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 The firing async is built on the Java 8 async model:

CompletionStage

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

CompletionStage<PanelUpdater> stage =
event.fireAsync(new PanelUpdater(green),

SwingUtilities::invokeLater);
}

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 Two ways of handling exceptions:

Returns a new CompletionStage

 That completes when the CS completes

 Either with the same result (normal completion)

 Or with the transformed exception

stage.exceptionaly(// Function
exception -> doSomethingWith(exception));

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 Two ways of handling exceptions:

Returns a new CompletionStage

 That completes when the CS completes

 Calls the BiFunction with a null as result or exception

 As a bonus: observers can return objects!

stage.handle(// BiFunction
(result, exception) -> doSomethingWith(result, exception));

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 Two ways of handling exceptions:

 The returned exception is a FireAsyncException

 It holds all the exceptions in the

suppressed exception set

stage.handle(// BiFunction
(result, exception) -> doSomethingWith(result, exception));

@antoine_sd @JosePaumard#CDI2

Events ordering

 Pattern:

 Ordering in async… possible but complex

public void firstObserver(@Observes @Priority(1) Payload p) {}

public void secondObserver(@Observes @Priority(2) Payload p) {}

AOP Enhancement

@antoine_sd @JosePaumard#CDI2

Support AOP on producer

 In CDI 1.x you cannot bind an interceptor to a produced

bean

 When you write:

 @Transactional is applied to producer method

@Produces
@Transactional
public MyService produceService() {

...
}

@antoine_sd @JosePaumard#CDI2

Solution: BeanInstanceBuilder

public class MyAdvancedProducerBean {

public BeanInstanceBuilder<MyClass> bib = new BeanInstanceBuilder<>();

@Produces

@RequestScoped

public MyClass produceTransactionalMyClass() {

AnnotatedTypeBuilder<MyClass> atb = new AnnotatedTypeBuilder<>()

.readFrom(MyClass.class)

.addToMethod(MyClass.class.getMethod("performInTransaction")

, new TransactionalLiteral());

return bib.readFromType(atb.build())

.build(); //instance of the bean with requested interceptors / decorators

}

public void disposeMyClass (@Disposes Myclass td) {

bib.dispose(td);

}

}

CDI 2.0 DEMO

@antoine_sd @JosePaumard#CDI2

CDI 2.0 needs you!!

CDI 2.0 specification is open to everyone

Mailing list, IRC channel

http://cdi-spec.org @cdispec

http://cdi-spec.org

Which JSR

you’ll use

365 days a year?

JSR 365!!

@antoine_sd @JosePaumard#CDI2

Q & A

