Siaaone CD) 2.0

what’s in the work?

Agenda

Flashback on CDI 1.0, 1.1 and 1.2
CDI 2.0 status

Gathering feedback for CDI 2.0
CDI 2.0 new features

Questions and Feedback

@antoine_sd @JosePaumard

Previously on CDI

CDI Timeline

June 2013 Apr 2014

Dec 2009

CDI 1.0 — December 2009

A typesafe dependency injection mechanism
A well-defined lifecycle for stateful objects

The ability to decorate or to associate interceptors to
objects with a typesafe approach

An event notification model
An SPI allowing portable extensions

@antoine_sd @JosePaumard

CDI 1.1 -June 2013

CDI is automatically enabled in Java EE

Introspection with bean, events, decorator and
Interceptor metadata

Ease access to CDI from non CDI code

Work on Iinterceptor for reuse by other Java EE specs
SPI enhancement for portable extensions

@antoine_sd @JosePaumard

CDI 1.2 — April 2014

Clarifications In the spec
» Lifecycles

* Events

» Conversation scope

Fix conflict with other JSR 330 frameworks
OSGi support in the AP

@antoine_sd @JosePaumard

CDI 2.0 started 12 months ago

JSR 365!
» First Java EE 8 JSR proposed and voted

Weekly IRC meeting

Regular release of Weld 3.0 Alpha (CDI 2.0 RI)
We have a lot of community momentum

Early Draft Is around the corner

Release expected in 2016 (Q27?)

@antoine_sd @JosePaumard

EG members

Pete Muir (Red Hat) Werner Kell

Antoine Sabot-Durand (Red Hat) = Joseph Snyder (Oracle)
José Paumard Mark Paluch

John Ament Florent Benoit (SERLI)
David Currie (IBM) Mark Struberg

Anatole Tresch (Credit Suisse) David Blevins (Tomitribe)
Antonio Goncalves George Gastaldi (Red Hat)
Thorben Janssen Otavio Santana

Raj. Hegde (JUG Chennai)

@antoine_sd @JosePaumard

We are open to the community!

Everybody can participate by joining the m ailing list :

https:lllists.iboss.orgl mailman/listinfo/cdi-dev |

@antoine_sd @JosePaumard

Gathegin
feedback s
2.

Jira requests

5 Former EG

_F_gedbagy_

Other specs feedback

CDI 2.0 survey

260 participants
20 features to rate

Who answered?

® developer ® advanced developer = framework developer

@antoine_sd @JosePaumard

Who answered?

m Plain Java EE m Servlet container w Java SE

@antoine_sd @JosePaumard

1st feature

Asynchronous support
for events and method invocation

@antoine_sd @JosePaumard

Other top requested features

@ Startup for CDI

Bootstraping outside of Java EE

AOP for custom beans

Security support

Observers ordering, better event control
Access to metadata through SPI

@antoine_sd @JosePaumard

Java SE support

Using CDI outside of the
Java EE Container

Why that?

To ease the testing of CDI applications

To provide a mean of building new stacks
out of Java EE

To boost CDI adoption for Spec working
already on Java SE

First step before working on a CDI light

@antoine_sd @JosePaumard

Java SE support will start in EDR1

We specified API to boot CDI In Java SE:

public static void main(String... args) {

CDIProvider provider = CDI.getCDIProvider();
CDI<Object> cdi = provider.initialize();

// retrieve a bean and do work with it

MyBean myBean = cdi.select(MyBean.class).get();
myBean.doWork();

// when done

cdi.shutdown();

Desktop and non Java EE application can now use a
standard way to boot CDI

@antoine_sd @JosePaumard

What did we do?

CDI for Java

CDI Core cE

@antoine_sd @JosePaumard

There’s still work to do

What about built-in contexts activation in Java SE?
 RequestScope

» SessionScope

» ConversationScope

@antoine_sd @JosePaumard

There’s still work to do

What about bean discovery in Java SE?
Annotated mode can be very costly

Implicit bean archive even more (support is disable
now)

What about support of multiple container in Java SE?

@antoine_sd @JosePaumard

Modularity

Provide sub specs in CDI (called parts)
that can be used independently
Each part should have an implementation

Why that?

To avoid the "bloated spec” syndrom
Having parts will help CDI adoption

Third party won't have to implement
the whole spec if they don’'t want to

@antoine_sd @JosePaumard

Modularity — 2 core parts

Full CDI

5aS|C D]
=PIEUUCESS
=2regrammatcioekup

Events
Normal scopes
Interceptor & Decorator

SINGIEIGN and AEPENCENT SCOPES
Advanced SPI

5ASIC SEINerInegraten

@antoine_sd @JosePaumard

Modularity — challenges

Will bring 4 subspec:
* CDl light for Java SE
* CDI full for Java SE
» CDiI light for Java EE
» CDiI full for Java EE

Having an Rl and TCK for each part can be an
Important work

@antoine_sd @JosePaumard

Enhancing events

Making a popular feature
even more popular!

Enhancing Events

CDI events are a very loved feature!

For CDI 2.0, we plan to introduce :
Asynchronous events
Events ordering

@antoine_sd @JosePaumard

Events in CDI 1.x: patterns

Firing pattern:

@Inject
Event<Payload> event;

public void someCriticalBusinessMethod() {

event.fire(new Payload());

@antoine_sd @JosePaumard

Events in CDI 1.x: patterns

Observing pattern:

public void callMe(@Observes Payload payload) {

// Do something with the event
}

Supports qualifiers and many other things

@antoine_sd @JosePaumard

CDI 1.x: Sync / Async

Sync / Async Is not specified
The immutable status of the payload Is not specified

Implementations use a Sync model

The payload is mutated in some implementations /
framework

Going async “blindly” might raise problems...

@antoine_sd @JosePaumard

Events are sync in CDI 1

Right now:
All the observers are called in the firing thread
In no particular order (at least not specified)
The payload may be mutated

@antoine_sd @JosePaumard

Events and contexts

Contexts

Two contexts are critical: transactions and HTTP
requests / sessions

Events are aware of those contexts

In an all-sync world, everything is fine
But in an async world, we will be In trouble

@antoine_sd @JosePaumard

Asynchronous Events

So designing backward compatible async events is more
tricky than it looks:

A currently sync event should remain sync

Going sync / async should be a decision taken
from the firing side

Being sync should be possible from the observing side

@antoine_sd @JosePaumard

Asynchronous Events

Pattern for the firing side:

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());

@antoine_sd @JosePaumard

Asynchronous Events

Pattern for the observing side:

public void callMe(@Observes Payload payload) {

// I am called in the firing thread
// Whether is was async fired or not

public void callMe((@ObservesAsync Payload payload) {

// I am called in another thread

@antoine_sd @JosePaumard

Asynchronous Events

So, In a nutshell

callMe(callMe(
@Observes payload) @ObservesAsync payload)
O ire(payload) Sync call Not notified
event £
Fireasync(payload) Not notified Async call

@antoine_sd @JosePaumard

What about mutable payloads?

One short answer:
Don’t do it!

Or suffer the full penalty of race conditions!

@antoine_sd @JosePaumard

We have some more

Let us come back to this pattern:

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());

15t question: in what thread are the observers going to
be called?

@antoine_sd @JosePaumard

We have some more

Let us come back to this pattern:

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());

2"d question: what if exceptions are thrown by the
observers?

@antoine_sd @JosePaumard

Adding an Executor to fireAsync

What Iif the observer needs to be called in the GUI
thread?

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new PanelUpdater(green),
executor); // Of type Executor

@antoine_sd @JosePaumard

Adding an Executor to fireAsync

What Iif the observer needs to be called in the GUI
thread?

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new PanelUpdater(green),
SwingUtilities::invokelLater);

@antoine_sd @JosePaumard

Handling exceptions

The firing async Is built on the Java 8 async model:
CompletionStage

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

CompletionStage<PanelUpdater> stage =
event.fireAsync(new PanelUpdater(green),
SwingUtilities: :invokelLater);

@antoine_sd @JosePaumard

Handling exceptions

Two ways of handling exceptions:

stage.exceptionaly(// Function
exception -> doSomethingWith(exception));

Returns a new CompletionStage
That completes when the CS completes
Either with the same result (normal completion)
Or with the transformed exception

@antoine_sd @JosePaumard

Handling exceptions

Two ways of handling exceptions:

stage.handle(// BiFunction
(result, exception) -> doSomethingWith(result, exception));

Returns a new CompletionStage
That completes when the CS completes
Calls the BiFunction with a null as result or exception

As a bonus: observers can return objects!

@antoine_sd @JosePaumard

Handling exceptions

Two ways of handling exceptions:

stage.handle(// BiFunction
(result, exception) -> doSomethingWith(result, exception));

The returned exception Is a FireAsyncException

It holds all the exceptions in the
suppressed exception set

@antoine_sd @JosePaumard

Events ordering

Pattern:

public void firstObserver(@Observes @Priority(1) Payload p) {}

public void secondObserver(@Observes @Priority(2) Payload p) {}

Ordering in async... possible but complex

@antoine_sd @JosePaumard

e B

AOP Enhancement
N g -

[78 |

-

Support AOP on producer

In CDI 1.x you cannot bind an interceptor to a produced
bean

@Produces
@Transactional

public MyService produceService() {

@Transactional Is applied to producer method

@antoine_sd @JosePaumard

Solution: BeanlnstanceBuilder

public class MyAdvancedProducerBean {

public BeanInstanceBuilder<MyClass> bib = new BeanInstanceBuilder<>() ;

@Produces
@RequestScoped

public MyClass produceTransactionalMyClass () {

AnnotatedTypeBuilder<MyClass> atb = new AnnotatedTypeBuilder<> ()
.readFrom (MyClass.class)

.addToMethod (MyClass.class.getMethod ("performInTransaction")
, new TransactionallLiteral());

return bib.readFromType (atb.build())

.build(); //instance of the bean with requested interceptors / decorators
}

public void disposeMyClass

(@Disposes Myclass td) {
bib.dispose (td) ;

}

@antoine_sd @JosePaumard

CDI 2.0 DEMO —

CDI 2.0 needs you!!

CDI 2.0 specification Is open to everyone
Mailing list, IRC channel

http://cdi-spec.org @cdispec

@antoine_sd @JosePaumard

http://cdi-spec.org

& A

@antoine_sd @JosePaumard

