
Microservices for
Mortals

@BertErtman

• Fellow at Luminis (Netherlands)

• Background in all things Java
since 1995

• Java Champion, JavaOne
Rockstar Speaker, and a Duke’s
Choice Award Winner

• Involved in architecting and
implementing dozens of large
scale systems over the past 20
years or so

• Book author for O’Reilly,
speaker at many conferences

About me

Italian Food Analogy

Before SOA:
SOA:

Microservices:

Spaghetti
Lasagna
???

Pick a side…

What if I’m allergic to
Italian food? Can I still do

Microservices?

Where did it come from?
• People have been doing AJAX, NoSQL, SOA, etc before they

even got a name

• Microservices style architectures are a response to adjust
software architecture to an ever-evolving spectrum. It addresses
Business Agility through technology:

• Usage of cloud-based infrastructure and services

• DevOps

• The need to scale up the number of people/teams

• Client-side revolution both in technologies and devices

Microservices
are about

Business Agility

Microservices are like SOA,
but only the good parts

What happened to SOA?

• SOA quickly turned into the rape victim of a vendor
infested lock-in massacre, excessively
complicating all good advice into giant overpriced
hairballs sold as fake middleware, ESBs, and
appliances.

Image credit: http://blogs.gartner.com/gary-olliffe/files/2015/01/InnerOuterMSA.png

http://blogs.gartner.com/gary-olliffe/files/2015/01/InnerOuterMSA.png

Which pill do you take?

blue pill world
• Blissful ignorance

• Hey, since everyone and their mother seems to be
tweeting about this microservices thing, it must be cool,
right?

• Heck, even Martin Fowler is blogging about it. Now it’s
definitely mainstream

• Dude, it’s on the freakin’ Technology Radar!

• Btw, this seems to be a killer way to introduce Node.js to
my customer, yeah!

Which pill do you take?

red pill world
• Painful truth of reality

• Where do we defy the laws of (IT) physics?

• This thing is about distributed computing which
after all these years is still very hard to do!

• This thing is about asynchronous programming
models, which are hard to grasp

• It has a number of other gotcha’s which I will go into…

There is no spoon

• Forget synchronous programming models

• Forget a single Enterprise Domain Model

• Forget ACID transactions

• Forget Relational Integrity

Welcome to red pill world

Pi
ct

ur
e

cr
ed

it:
 @

Pa
ris

Pi
c

About Monoliths
• The word ‘monolith’ has a negative

connotation

• Not all non-microservices apps  
are bad applications

• What do you call an application
that everyone wants to interface
with but was not designed to do?

Monolith?

a successful
application?

When monoliths are bad
• But… such systems can end up as monoliths with all the

negative connotations to it as they:

• Start to build up massive technical debt

• Become hard to change without breaking stuff

• QA and test cycles take lots of time (expensive)

• When heavy internal coupling starts to take over control
of the application

• Become married to the underlying technical stack

Monolith to Microservices
approach

• As was recently suggested by Martin Fowler, et al.
the Monolith-First approach is a way of “strangling
off services from a monolithic application”.

• This makes great theory, but is pretty hard to do in
practice

• Often times building blocks on the inside of an
application are not suitable as building blocks
outside of an application

Monolith to Microservices
Struggles

• Initial Investment

• Data Strategy

• Synchronous  
vs Asynchronous

• Conway’s Law

• Re-use Traps

• Dealing with Failure

Initial Investment
• So-called “Outer Architecture”

• Service Discovery

• Logging

• Metrics and Analytics

• DevOps process in-place

• Solid CI/CD practices

• Impact on testing strategy

Data Strategy

Data Strategy

• Don’t have multiple microservices share the same
database model and perform updates on it

• this results in unwanted coupling

• Separate at least read/write access if you must

• Better: separate data stores for each service

Data Strategy

• Q: What if I have common data?

• A: Either perform a call to another service or just
copy the data

• Q: How do I deal with referential integrity?

• A: Move it up in the application layer

Synchronous vs
Asynchronous

• Within the monolith, most communication will be
synchronous

• Your interfaces have been designed with
synchronous, in-process, interactions in mind

• May be chatty (fine-grained)

• Rethinking interaction patterns is essential

• Rethink the communication protocol as well

Service Communication
• Standardize on a common communication protocol

• Oftentimes people choose REST, but there are
others

• protobuf, thrift, zeromq, mqtt, …

• Is REST fast enough to do massive fan-out?

• Maybe have two: synchronous and asynchronous

Avoid re-use traps

• Q: What is the best strategy for reusing common
functionality between microservices?

• A: Copy it in the beginning of the project if you
must. Never look back. Microservices are designed
to be TOTALLY independent of each other,
remember?

Conventions over
abstractions!

Conway’s Law

So here is the obligatory reference to Conway’s Law:

“Organizations which design systems ... are  
 constrained to produce designs which are copies of  
 the communication structures of these organizations"

—M. Conway 1968

What it actually means
• Make sure the organization is compatible with the

software architecture

• If your (microservices) architecture does not reflect
the way your organization is structured, don’t even
bother going that way!

• It also means that your team should be cross-
functional. Everyone you need to build, maintain
and get it into production must be part of the team

This is hard!

SOA Adoption Model

Failure will
ALWAYS
happen

Design for Failure
• Dependent services may be unavailable or too slow to respond

• Minimize human intervention

• failure happens all the time, so it shouldn’t be a big deal

• fail faster sooner than later (prevent cascading)

• Horizontal clustering to the rescue (multiple services)

• Resilience Patterns to the rescue

• CircuitBreaker, Bulkhead, Caching, Retry, Messaging, etc

• This is complicated stuff. It is not just about throwing Hystrix or some
other library in

Some take-aways
• The essence of Microservices is about structuring

systems differently

• It’s about Modularity

• It’s about Separation of Concerns

• It’s about Single Responsibility Principle

• It addresses Business Agility through technology

• Those are not bad things!

However…

• Everything comes at a price

• Aligning the architecture to the organization is
surprisingly hard

• It is not just a matter of throwing in a couple of
frameworks, you have to think things through
thoroughly before going this direction

In the end…
• Keep on educating yourself as more war stories

see the light of day

• Don’t just listen to one vendor’s version of the story,
all they care about is locking you in

• Have a rational thought process trump the hype,
however difficult that is - think for yourself rather
than following just the latest blogs and
technologies

And one more thing…
• We are not all Netflix or Amazon

• Just like we’re not all Twitter and Facebook with the
Big Data and Web Scale hypes…

• not all of us have billions of calls floating around
at any given day

• if you pretend you are, you will have all their
infrastructural problems to deal with for free and
even at a minor scale they are just as hard

Thanks!

@BertErtman

