]avaOne

ORACLE

Unleashing Lambdas in
a Distributed System

Brian Oliver

Oracle Corporation | Coherence Englneerlg
October 2015 P ¥y

Email: brian.oliver@oracle.com
Twitter: @pinocchiocode

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The followingis intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporatedinto any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

e ORACLE

Program Agenda

E» Lambdas

E» Remote Functional Interfaces & Lambdas
) Demonstrations!

E» The Challenges and Limitations

) Next Steps

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

e ORACLE

)
-
d

)

-

A%

roduction

‘A.i

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Introduction to Lambdas
A defining new feature of the Java 8 Platform

>

Enable hybrid, object-oriented / functional programming in Java

Allow you to pass code-as-data

Both as arguments and as return values

Extensive enhancement of existing Java libraries to support them
Map<String, String> candidates = LinkedHashMap<>()
candidates.put(

candidates.put(
candidates.put(

candidates.forEach((k, v) -> System. .printf(

éiJavaOne“

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 6

e ORACLE

Introduction to Lambdas
Automatically Capture Surrounding “effectively final” Context = Closures!

&

Closures = function + environment

Party party = Party.

Map<String, String> candidates = LinkedHashMap<>()

candidates.put(
candidates.put(
candidates.put(

candidates.forEach((k, v) -> System. .printf(

éiJavaOne"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 7

—— ORACLE

Introduction to Lambdas

Replace anonymous “functional interface” inner-classes with lambdas

g

Before:

executor.submit(Runnable()

{

run()

{
System. .printin(

executor.submit(() -> System. .printin(

éiJavaOne"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 8

—— ORACLE

Introduction to Lambdas

An example functional interface

Runnable Interface in Java 8:

@QFunctionallnterface
Runnable {

<code> </code>

<p=>

éiJavaOne"

—— ORACLE

<code> </code>

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

But...

Can they be distributed and
invoked across devices,
machines, data-centers...
cloud?

g) JavaOner

CRACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 10

Introduction to Lambdas A

Standard Functional Interfaces and thus Lambdas are not serializable by default ®

We can cast them though...

Runnable r = (Runnable & Serializable)

() -> System. .println(

Output™:

SerializedLambda[capturingClass=class JavaExamples,
functionallnterfaceMethod=java/lang/Runnable. run:()V,
implementation=invokeStatic JavaExamples.lambda$serialization$2feeadd5%$1:()V,

instantiatedMethodType=()V, numCaptured=0]

:.') la\igg_lge Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 11
=——4

Introduction to Lambdas &

None of the new functional interfaces are Serializable ®

* There are many new functional interfaces in Java 8:
— java.util.function.Function<T, R>
— java.util.function.Predicate<T>
—java.util.function.Supplier<T>
—java.util.function.Consumer<T>
—java.util.function.BiConsumer<T, U>
—java.util.function.UnaryOperator<T>
—java.util.function.BinaryOperator<T>
— ... and their primitive variants

é) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 12

e ORACLE

Introduction to Lambdas
None of the existing functional interfaces are Serializable ®

* And some of our old friends are also functional interfaces:

— java.lang.Runnable
— java.util.concurrent.Callable<V>
— java.util.Comparator<T>

* Perhaps all unusable in a distributed environment?

¢

= lava O ne Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 13

e ORACLE

)
-
d

)

-

A%

‘A.i

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Remote Functional Interfaces
Extensions of existing functional interfaces to support Serialization ©

&

Eg: The Coherence Remote Class defines serializable functional interfaces

Remote

{
@Functionallnterface
Function< >
java.util. function.Function< >, Serializable {}

@FunctionallInterface
Runnable
extends java.lang.Runnable, Serializable {}

‘ﬁ) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 15

—— ORACLE

¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::)]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Remote Functional Interfaces
Most specific methods win!

* In addition to the standard Map method:

computeIfAbsent (K key, Function<? : > mappingFunction);

* Coherence NamedCache also defines:

computeIfAbsent (K key, Remote.Function<? : > mappingFunction) ;

* Java Compiler resolves to use the “most specific overloaded method”... so
we’re ready to do some distributed lambdas!

%{i) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 17

e ORACLE

)
-
d

)

-

A%

enormous

‘A.i

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

o
.‘Q
% 3
v‘ " -
-
A% (A,

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Oh!

“Serialization: The gift that
keeps on giving”
Brian Goetz
Java Language Architect

g) JavaOner

ORACLE"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 20

Challenge: Lambda Serialization &

Java provides the bare minimum... in a distributed environment we need a lot more

* Developers use multiple types of serialization
—Java only providesone

* Lambdas need to be stable across application versions
— Java does not provide any such guarantees, it’s weak at best

* Developers want to introduce new lambdas without restarting
— Java expects the same version of the capturing class to exist everywhere

* Coherence provides a custom and yet completely compatible remoting
framework to solve these challenges

é) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 21

e ORACLE

Limitation: Closure Serialization
Lambdas need to be self contained and serializable

 N—
Should not reference fields or methods of the capturing class

Should not reference anything that isn’t certain to exist both on the client
and on the server

Should only capture local serializable variables (use a static factory!)

Remote.BiFunction<String, Candidate, Candidate> changeToFunction(Party party)

(key, candidate) ->

{
candidate.setParty(party)
candidate

{g, JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 22

e ORACLE

Limitation: Closure Serialization
Lambdas need to be self contained and serializable

&

Should not nest other non-serializable lambdas
Don’t do this:

Map<String, String> names = .invokeAll((entry) — entry.extract(Candidate::getName))

Instead do this:

ValueExtractor<Candidate, String> extractor = Candidate::getName;

Map<String, String> names = .invokeAll((entry) — entry.extract(extractor))

{; JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 23

ORACLE"

¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::)]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Summary
Distributed Lambdas Rock! Imagine the possibilities!

* Lambdas are a defining feature of Java 8

* Coherence 12.2.1 allows you to use lambdas
— Like standard Java, but both locally & in a distributed manner

— Allows in-place update without locking / synchronization
— With existing Coherence features (like Entry Processors, Listeners...)
— To perform stream-based operations

* Coherence adds support for serialization of standard functional interfaces

* Coherence handles distributed stream & lambdas in a dynamic way
— Supports multiple versions of clients seamlessly running side-by-side without restart

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 25

e ORACLE

¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::)]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Start Playing!

Coherence for Developers!

* https://www.oracle.com/goto/coherence

* https://coherence.java.net

. https://twitter.com/OracleCoherence
m https://www.linkedin.com/grp/home?gid=1782166

Ihttps://blogs.oracIe.com/OracIeCoherence You Tubé http://www.youtube.com/OracleCoherence

) 'a\LEAQ_De Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 27

C
T

£ U

i T !
t Note: The speaker notes for thisslideinclude i
i detailed instructions on how to reuse this |
i Section Header slideinanother presentation. |
] H
i i

Tip! Remember to remove this text box.

cﬁ) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 28

e ORACLE

Safe Harbor Statement

The precedingis intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporatedinto any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 29

e ORACLE

Integrated Cloud

Applications & Platform Services

]avaOne

ORACLE

