

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
3

Classroom Training

Learning

Subscription

Live Virtual Class

Training On Demand

Keep Learning with Oracle University

education.oracle.com

Cloud

Technology

Applications

Industries

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Session Surveys
!

Help us help you!!
• Oracle would like to invite you to take a moment to give us your

session feedback. Your feedback will help us to improve your
conference.
• Please be sure to add your feedback for your attended sessions by

using the Mobile Survey or in Schedule Builder.

4

RESTful Microservices

Petr Janouch
Software Developer
Oracle, Application Server Group
October 28, 2015

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Goal of The Presentation
• To show how Jersey as JAX-RS 2.0 could be used outside a Java EE

container in a light-weight fashion to implement RESTful micro-
services in Java

7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Agenda

Microservices Primer

JAX-RS/Jersey Primer

Jersey features to support microservices development

1

2

3

8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Agenda

Microservices Primer

JAX-RS/Jersey Primer

Jersey features to support microservices development

1

2

3

9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Properties of large monolith applications
• Large applications too complex and fragile
• Deployments slow and expensive
– entire application must be tested
– hard to deploy/test any module in isolation

• Problem tracking and isolation
• Scaling only the entire application

10

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Dream of a microservice
• working the unix way
– narrow your scope
– do one thing but do it well

• decoupling
– simpler
– easier
– cheaper
– faster to develop

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
12

– Martin Fowler, ThoughtWorks

“Small services,  
each running in its own process and
communicating with lightweight
mechanisms.”

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Properties of Microservice Architecture
• Isolated impact of changes
– Can be rewritten rather than

maintained
– Easier to upgrade technologies

• Isolated scope
– reflect one business capability
– small enough to fit in your head

• Container-less deployment
– Self-contained
– Single OS process

• Smart endpoints & dump pipes
– Communicate using standardised

application protocols and message
semantics

• Cloud-friendly
– Auto-scaling and designed for

failures

• Enforces modularity
• “You build it, you run it” model
– stronger customer focus

13

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Microservices -The Hard Stuff
• Provisioning
–How do I deploy a service?
–How do I upgrade a service to a new version?
–How do I upgrade multiple services to a new version?
–How do I ensure consistent configuration?

• Integration & discovery
–Where can I find the service I need to interact with?
–How do I interact with a service?

• Testing & Troubleshooting
–How do I test and debug in a distributed service environment?

• Consistency
–How do I ensure that all services expose consisted API?

• Fault tolerance and isolation

14

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Application interface
• Be of the web not on the web!
• HTTP and universal media types can be consumed by different

clients
• Looks familiar? You are right, this is REST

15

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Agenda

Microservices Primer

JAX-RS/Jersey Primer

Jersey features to support microservices development

2

1

3

16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JAX-RS/Jersey primer
• JAX-RS 2.0
– part of Java EE 7 (2013)
– defines a standard API for
• Implementing RESTful web services in Java
• REST client API

• Jersey 2.0
– provides production ready JAX-RS 2.0 reference implementation
– brings many non-standard features

17

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Notable features
• Integration with various HTTP containers and client transports

• Support for SSE
• MVC view templates
• Reactive/Async Client
• Security (SSL, OAuth, …)
• Test Framework
• Monitoring and Tracing
• Various data bindings

18

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
19

HttpServer httpServer = GrizzlyHttpServerFactory.createHttpServer(myUri, new
MyApp(), false);!
httpServer.start();!
!
public MyApp() extends ResourceConfig {!
 super(HelloResource.class);!
}!
!
@Path(“hello”)!
public class HelloResource {!
!
 @GET!
 public String sayHello() {!
 return “Hello”;!
 }!
}

One slide Jersey application

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Agenda

Microservices Primer

JAX-RS/Jersey Primer

Jersey features to support microservices development3

1

2

20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Selected Jersey features
• Grizzly HTTP server support
• Application monitoring and tracing
• Powerful client

21

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Supported server containers
• Grizzly HTTP server
• Servlet 2.4-3.1
• Jetty HTTP Container (Jetty Server Handler)
• Java SE HTTP Server (HttpHandler)
• Other containers could be plugged in via ContainerProvider SPI

22

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Grizzly HTTP server
• Lightweight HTTP server
• High performance
• Powers Glassfish AS
• HTTP 2, Websockets, Comet
• Secure
• Optional Servlet API
• Serves static resources

23

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
24

HttpServer httpServer = GrizzlyHttpServerFactory!
 .createHttpServer(myUri, new MyApp(), false);!
HttpHandler httpHandler = new
CLStaticHttpHandler(HttpServer.class.getClassLoader(), "/static/");!
httpServer.getServerConfiguration().addHttpHandler(httpHandler, "/");!
httpServer.getServerConfiguration().setSessionTimeoutSeconds(. . .);!
NetworkListener listener = httpServer.getListener("grizzly");!
listener.getTransport().setSelectorRunnersCount(4);!
listener.getTransport().setWorkerThreadPoolConfig(!
ThreadPoolConfig.defaultConfig().setCorePoolSize(8).setMaxPoolSize(16));!
listener.setDefaultErrorPageGenerator(. . .);!
listener.getFileCache().setMaxCacheEntries(. . .);!
listener.getCompressionConfig().setCompressionMode(. . .);

Grizzly configuration example

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Monitoring support

25

• Powerful monitoring API
• Basic statistics collected
• Custom event listeners can be created
• MBean and programmatic API
• Statistics can be injected into a resource:
@Inject!
private Provider<MonitoringStatistics> statistics

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
26

public class MyRequestEventListener implements RequestEventListener {!
 private final long startTime = System.currentTimeMillis()!!
 @Override!
 public void onEvent(RequestEvent event) {!
 switch (event.getType()) {!
 case RESOURCE_METHOD_START:!
 System.out.println("Resource method "!
 + event.getUriInfo().getMatchedResourceMethod()!
 .getHttpMethod()!
 + " started for request " + requestNumber);!
 break;!
 case FINISHED:!
 System.out.println("Request " + requestNumber!
 + " finished. Processing time "!
 + (System.currentTimeMillis() - startTime) + " ms.");!
 break;!
 }!
 }!
}

Custom monitoring event listeners

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MonitoredApp

Grizzly and monitoring demo

27

Resource 1

MonitoringResource

Resource 2
MonitoredApp

Resource 1

MonitoringResource

Resource 2
MonitoredApp

Resource 1

MonitoringResource

Resource 2

MonitoringApp

StatisticsResource SSE

GET

GET

GET

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
28

@Path("/resource1")!
public class MonitoredResource1 {!
!
 @GET!
 public String getHello() {return "Hello from resource 1";}!
}!
!
@Path("/resource2")!
public class MonitoredResource2 {!
!
 @GET!
 public String getHello() {return "Hello from resource 2";}!
}

Grizzly and monitoring demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
29

@Path("monitoring")!
public class MonitoringResource {!!
 @Inject private Provider<MonitoringStatistics> statistics;!!
 @Produces(MediaType.APPLICATION_JSON)!
 @GET!
 public MonitoringData get() {!
 MonitoringData monitoringData = new MonitoringData();!
 Map<String, Long> rr = statistics.get()!
 .getResourceClassStatistics()!
 .entrySet()!
 .stream()!
 .collect(Collectors.toMap(!
 e -> e.getKey().getSimpleName(),!
 e -> e.getValue()!
 .getRequestExecutionStatistics()!
 .getTimeWindowStatistics()!
 .get(1000L)!
 .getRequestCount()));!
 monitoringData.setRequestsPerResource(rr);!
 return monitoringData;!
 }!
}

Grizzly and monitoring demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
30

@Path("statistics")!
public class StatisticsResource {!!
 private static final SseBroadcaster broadcaster = new SseBroadcaster();!
 private static final ScheduledExecutorService scheduler = ...!
 private static final Client client = ClientBuilder.newClient();!!
 @Inject!
 private MonitoringApp monitoringApp;!!
 @GET!
 @Produces(SseFeature.SERVER_SENT_EVENTS)!
 public EventOutput get() {!
 EventOutput output = new EventOutput();!
 broadcaster.add(output);!
 scheduler.scheduleAtFixedRate(this::broadcastStatistics, 0, 1, TimeUnit.SECONDS);!
 return output;!
 }!!
 . . .!
}

Grizzly and monitoring demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
31

private void broadcastStatistics() {!
 List<URI> monitoringEndpoints = monitoringApp.getMonitoredApps();!
 List<MonitoringData> monitoringData = monitoringEndpoints!
 .stream()!
 .map((endpointUri) -> {!
 Response response = client.!
 target(endpointUri)!
 .path("monitoring").request()!
 .get();!
 MonitoringData data = response.readEntity(MonitoringData.class);!
 data.setNode(endpointUri.getHost() + ":" + endpointUri.getPort());!
 return data;!
 }).collect(Collectors.toList());!!
 OutboundEvent event = new OutboundEvent.Builder()!
 .mediaType(MediaType.APPLICATION_JSON_TYPE)!
 .data(monitoringData).build();!
 broadcaster.broadcast(event);!
 }

Grizzly and monitoring demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
32

create arm/java image!
FROM resin/rpi-raspbian:wheezy!
COPY jre /data/jre!
ENV PATH /data/jre/bin:$PATH!
CMD ["java", “-version"]!
!
!
create monitoredApp image!
FROM arm/java8!
COPY Monitored-app.jar /data/Monitored-app.jar!
CMD ["java", "-jar", "/data/Monitored-app.jar"

Demo deployment
Monitored

App
Monitoring

App
Monitored

App
Monitored

App

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Grizzly and monitoring demo summary
• https://github.com/PetrJanouch/JavaOne2015-Monitoring-Demo

33

https://github.com/PetrJanouch/JavaOne2015-Monitoring-Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Client in the microservice world

34

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Jersey client primer

35

Client client = ClientBuilder.newClient(new ClientConfig()!
 .register(MyClientResponseFilter.class)!
 .register(new AnotherClientFilter()));!
 !
String entity = client.target("http://example.com/rest")!
 .register(FilterForExampleCom.class)!
 .path("resource/helloworld")!
 .queryParam("greeting", "Hi World!")!
 .request(MediaType.TEXT_PLAIN_TYPE)!
 .header("some-header", "true")!
 .get(String.class);!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Jersey client - features
• Fluent API
• Many connectors (Grizzly, Jetty, Apache, …)
• Secure (SSL, Digest, Basic, OAuth, …)
• Various data bindings
• Filters
• Reactive extensions

36

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Hotel booking example
• Get free hotels close to a specified location
– find hotels within 5 kilometre radius
– check hotel availability
– get stored information about the hotel
– get stored information about the user
– return personalised list of available hotels

• Each call to a service takes 100ms

37

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Hotel search service call dependency

38

Hotel information

Hotel availability

User information

recommendation
engineSpatial search

Hotel availabilityHotel availabilityHotel availability

Hotel informationHotel informationHotel information

For each

For each

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Hotel search - synchronous client
• Easy and straightforward
• Latency for 10 results:
– 100 + 10x100 + 10x100 + 100 + 100 = 2300 ms

• Executors to the rescue?
!
!
!
– up to 21 threads handling 1 hotel search request
– a lot of synchronisation required

39

executorService.submit(()-> {!
 Response searchResult = client.target("search").request().get();!
 ...!
 });

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Hotel search - asynchronous client

40

client.target("search").request().async()!
 .get(new InvocationCallback<List<String>>() {!
 public void completed(List<String> hotels) {!
 for (String hotel : hotels) {!
 client.target("hotelDetail").path(hotel).request().async()!
 .get(new InvocationCallback<Hotel>() {!!
 public void completed(Hotel hotel) {!
 ...!
 }!!
 public void failed(Throwable throwable) {!
 ...!
 }!
 });!
 ...!
 }!
 }!!
 public void failed(Throwable throwable) {!
 ...!
 }!
 });

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Reactive client
• As fast as an async client
• Data flows
– execution model propagates changes through the flow

• Event based
– notify user code or another item in the flow continuation, error, completion

• Composable
– compose/ transform flows into a resulting flow

41

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Jersey reactive client libraries
• Java 8
– CompletionStage, CompletableFuture

• Guava
– ListenableFuture, Futures

• RXJava
–Observable
– Contributed by Netflix
– Complicated but powerful

42

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Hotel search - RX client

43

Observable<Destination> recommended = RxObservable.from(client.target("search"))!
 .request()!
 .rx()!
 .get(new GenericType<List<String>>() {})!
 .onErrorReturn(throwable -> {!
 . . .!
 })!
 .flatMap(hotelId -> {!
 Observable<Hotel> i = RxObservable.from(client.target(“hotelInfo")) . . .!
 Observable<Boolean> available = RxObservable.from(. . .!
 return Observable.zip(i, available, . . .)!
 }!
 .take(10)!
 .toList()!
 . . .

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Summary

44

• When writing microservices in Java, JAX-RS is a natural choice to
implement REST interface
• Jersey brings several non-standard options that might be handy:
– Lightweight container support
–Monitoring features (auto-scaling)
– Powerful client (+ reactive extensions)

• There is more to come in future Jersey versions

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Q/A

45

