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Session Surveys
!

Help us help you!! 
• Oracle would like to invite you to take a moment to give us your 

session feedback. Your feedback will help us to improve your 
conference.  
• Please be sure to add your feedback for your attended sessions by 

using the Mobile Survey or in Schedule Builder.
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Safe Harbor Statement

The following is intended to outline our general product direction. It is intended 
for information purposes only, and may not be incorporated into any contract. It 
is not a commitment to deliver any material, code, or functionality, and should 
not be relied upon in making purchasing decisions. The development, release, 
and timing of any features or functionality described for Oracle’s products 
remains at the sole discretion of Oracle.
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Goal of The Presentation
• To show how Jersey as JAX-RS 2.0 could be used outside a Java EE 

container in a light-weight fashion to implement RESTful micro-
services in Java
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Properties of large monolith applications
• Large applications too complex and fragile 
• Deployments slow and expensive 
– entire application must be tested 
– hard to deploy/test any module in isolation 

• Problem tracking and isolation 
• Scaling only the entire application

10
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Dream of a microservice
• working the unix way 
– narrow your scope 
– do one thing but do it well 

• decoupling 
– simpler 
– easier 
– cheaper 
– faster to develop

11
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– Martin Fowler, ThoughtWorks

“Small services,  
each running in its own process and 
communicating with lightweight 
mechanisms.”
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Properties of Microservice Architecture
• Isolated impact of changes 
– Can be rewritten rather than 

maintained 
– Easier to upgrade technologies 

• Isolated scope 
– reflect one business capability 
– small enough to fit in your head 

• Container-less deployment 
– Self-contained 
– Single OS process 

• Smart endpoints & dump pipes 
– Communicate using standardised 

application protocols and message 
semantics 

• Cloud-friendly 
– Auto-scaling and designed for 

failures 

• Enforces modularity 
• “You build it, you run it” model 
– stronger customer focus

13



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  

Microservices -The Hard Stuff
• Provisioning 
–How do I deploy a service? 
–How do I upgrade a service to a new version? 
–How do I upgrade multiple services to a new version? 
–How do I ensure consistent configuration? 

• Integration & discovery 
–Where can I find the service I need to interact with? 
–How do I interact  with  a service? 

• Testing & Troubleshooting 
–How do I test and debug in a distributed service environment? 

• Consistency 
–How do I ensure that all services expose consisted API? 

• Fault tolerance and isolation

14
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Application interface
• Be of the web not on the web! 
• HTTP and universal media types can be consumed by different 

clients 
• Looks familiar? You are right, this is REST

15
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JAX-RS/Jersey primer
• JAX-RS 2.0  
– part of Java EE 7 (2013) 
– defines a standard API for 
• Implementing RESTful web services in Java 
• REST client API 

• Jersey 2.0 
– provides production ready JAX-RS 2.0 reference implementation 
– brings many non-standard features

17
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Notable features
• Integration with various HTTP containers and client transports 

• Support for SSE 
• MVC view templates 
• Reactive/Async Client 
• Security (SSL, OAuth, …) 
• Test Framework 
• Monitoring and Tracing  
• Various data bindings 

18
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HttpServer httpServer = GrizzlyHttpServerFactory.createHttpServer(myUri, new 
MyApp(), false);!
httpServer.start();!
!
public MyApp() extends ResourceConfig {!
    super(HelloResource.class);!
}!
!
@Path(“hello”)!
public class HelloResource {!
!
    @GET!
    public String sayHello() {!
        return “Hello”;!
    }!
}

One slide Jersey application
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Selected Jersey features
• Grizzly HTTP server support 
• Application monitoring and tracing 
• Powerful client

21
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Supported server containers
• Grizzly HTTP server 
• Servlet 2.4-3.1 
• Jetty HTTP Container (Jetty Server Handler) 
• Java SE HTTP Server (HttpHandler) 
• Other containers could be plugged in via ContainerProvider SPI

22
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Grizzly HTTP server
• Lightweight HTTP server 
• High performance 
• Powers Glassfish AS 
• HTTP 2, Websockets, Comet 
• Secure 
• Optional Servlet API 
• Serves static resources

23
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HttpServer httpServer = GrizzlyHttpServerFactory!
    .createHttpServer(myUri, new MyApp(), false);!
HttpHandler httpHandler = new 
CLStaticHttpHandler(HttpServer.class.getClassLoader(), "/static/");!
httpServer.getServerConfiguration().addHttpHandler(httpHandler, "/");!
httpServer.getServerConfiguration().setSessionTimeoutSeconds( . . .);!
NetworkListener listener = httpServer.getListener("grizzly");!
listener.getTransport().setSelectorRunnersCount(4);!
listener.getTransport().setWorkerThreadPoolConfig(!
ThreadPoolConfig.defaultConfig().setCorePoolSize(8).setMaxPoolSize(16));!
listener.setDefaultErrorPageGenerator(. . .);!
listener.getFileCache().setMaxCacheEntries(. . .);!
listener.getCompressionConfig().setCompressionMode( . . .);

Grizzly configuration example
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Monitoring support

25

• Powerful monitoring API 
• Basic statistics collected 
• Custom event listeners can be created 
• MBean and programmatic API 
• Statistics can be injected into a resource:
@Inject!
private Provider<MonitoringStatistics> statistics
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public class MyRequestEventListener implements RequestEventListener {!
    private final long startTime = System.currentTimeMillis()!!
    @Override!
    public void onEvent(RequestEvent event) {!
        switch (event.getType()) {!
            case RESOURCE_METHOD_START:!
                System.out.println("Resource method "!
                    + event.getUriInfo().getMatchedResourceMethod()!
                        .getHttpMethod()!
                    + " started for request " + requestNumber);!
                break;!
            case FINISHED:!
                System.out.println("Request " + requestNumber!
                    + " finished. Processing time "!
                    + (System.currentTimeMillis() - startTime) + " ms.");!
                break;!
        }!
    }!
}

Custom monitoring event listeners
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MonitoredApp

Grizzly and monitoring demo
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@Path("/resource1")!
public class MonitoredResource1 {!
!
    @GET!
    public String getHello() {return "Hello from resource 1";}!
}!
!
@Path("/resource2")!
public class MonitoredResource2 {!
!
    @GET!
    public String getHello() {return "Hello from resource 2";}!
}

Grizzly and monitoring demo
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@Path("monitoring")!
public class MonitoringResource {!!
    @Inject private Provider<MonitoringStatistics> statistics;!!
    @Produces(MediaType.APPLICATION_JSON)!
    @GET!
    public MonitoringData get() {!
        MonitoringData monitoringData = new MonitoringData();!
        Map<String, Long> rr = statistics.get()!
                .getResourceClassStatistics()!
                .entrySet()!
                .stream()!
                .collect(Collectors.toMap(!
                        e -> e.getKey().getSimpleName(),!
                        e -> e.getValue()!
                                .getRequestExecutionStatistics()!
                                .getTimeWindowStatistics()!
                                .get(1000L)!
                                .getRequestCount()));!
        monitoringData.setRequestsPerResource(rr);!
        return monitoringData;!
    }!
}

Grizzly and monitoring demo
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@Path("statistics")!
public class StatisticsResource {!!
    private static final SseBroadcaster broadcaster = new SseBroadcaster();!
    private static final ScheduledExecutorService scheduler = ...!
    private static final Client client = ClientBuilder.newClient();!!
    @Inject!
    private MonitoringApp monitoringApp;!!
    @GET!
    @Produces(SseFeature.SERVER_SENT_EVENTS)!
    public EventOutput get() {!
        EventOutput output = new EventOutput();!
        broadcaster.add(output);!
        scheduler.scheduleAtFixedRate(this::broadcastStatistics, 0, 1, TimeUnit.SECONDS);!
        return output;!
    }!!
   . . .!
}

Grizzly and monitoring demo



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  
31

private void broadcastStatistics() {!
        List<URI> monitoringEndpoints = monitoringApp.getMonitoredApps();!
        List<MonitoringData> monitoringData = monitoringEndpoints!
                .stream()!
                .map((endpointUri) -> {!
            Response response = client.!
                    target(endpointUri)!
                    .path("monitoring").request()!
                    .get();!
            MonitoringData data = response.readEntity(MonitoringData.class);!
            data.setNode(endpointUri.getHost() + ":" + endpointUri.getPort());!
            return data;!
        }).collect(Collectors.toList());!!
        OutboundEvent event = new OutboundEvent.Builder()!
                .mediaType(MediaType.APPLICATION_JSON_TYPE)!
                .data(monitoringData).build();!
        broadcaster.broadcast(event);!
    }

Grizzly and monitoring demo
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# create arm/java image!
FROM resin/rpi-raspbian:wheezy!
COPY jre /data/jre!
ENV PATH /data/jre/bin:$PATH!
CMD ["java", “-version"]!
!
!
# create monitoredApp image!
FROM arm/java8!
COPY Monitored-app.jar /data/Monitored-app.jar!
CMD ["java", "-jar", "/data/Monitored-app.jar"

Demo deployment
Monitored 

App
Monitoring 

App
Monitored 

App
Monitored 

App
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Grizzly and monitoring demo summary
• https://github.com/PetrJanouch/JavaOne2015-Monitoring-Demo
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https://github.com/PetrJanouch/JavaOne2015-Monitoring-Demo
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Client in the microservice world

34
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Jersey client primer

35

Client client = ClientBuilder.newClient(new ClientConfig()!
            .register(MyClientResponseFilter.class)!
            .register(new AnotherClientFilter()));!
 !
String entity = client.target("http://example.com/rest")!
            .register(FilterForExampleCom.class)!
            .path("resource/helloworld")!
            .queryParam("greeting", "Hi World!")!
            .request(MediaType.TEXT_PLAIN_TYPE)!
            .header("some-header", "true")!
            .get(String.class);!
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Jersey client - features
• Fluent API 
• Many connectors (Grizzly, Jetty, Apache, …) 
• Secure (SSL, Digest, Basic, OAuth, …) 
• Various data bindings 
• Filters  
• Reactive extensions

36
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Hotel booking example
• Get free hotels close to a specified location 
– find hotels within 5 kilometre radius 
– check hotel availability 
– get stored information about the hotel 
– get stored information about the user 
– return personalised list of available hotels 

• Each call to a service takes 100ms

37
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Hotel search service call dependency

38

Hotel information

Hotel availability

User information

recommendation 
engineSpatial search

Hotel availabilityHotel availabilityHotel availability

Hotel informationHotel informationHotel information

For each

For each
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Hotel search - synchronous client
• Easy and straightforward 
• Latency for 10 results:  
– 100 + 10x100 + 10x100 + 100 + 100 = 2300 ms  

• Executors to the rescue? 
!
!
!
– up to 21 threads handling 1 hotel search request 
– a lot of synchronisation required

39

executorService.submit(()-> {!
            Response searchResult = client.target("search").request().get();!
            ...!
        });
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Hotel search - asynchronous client

40

client.target("search").request().async()!
    .get(new InvocationCallback<List<String>>() {!
        public void completed(List<String> hotels) {!
            for (String hotel : hotels) {!
                client.target("hotelDetail").path(hotel).request().async()!
                    .get(new InvocationCallback<Hotel>() {!!
                        public void completed(Hotel hotel) {!
                            ...!
                        }!!
                        public void failed(Throwable throwable) {!
                            ...!
                        }!
                    });!
                ...!
            }!
        }!!
        public void failed(Throwable throwable) {!
            ...!
        }!
    });
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Reactive client
• As fast as an async client 
• Data flows 
– execution model propagates changes through the flow 

• Event based 
– notify user code or another item in the flow continuation, error, completion 

• Composable 
– compose/ transform flows into a resulting flow

41
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Jersey reactive client libraries
• Java 8  
– CompletionStage, CompletableFuture 

• Guava 
– ListenableFuture, Futures 

• RXJava 
–Observable 
– Contributed by Netflix 
– Complicated but powerful

42
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Hotel search - RX client

43

Observable<Destination> recommended = RxObservable.from(client.target("search"))!
    .request()!
    .rx()!
    .get(new GenericType<List<String>>() {})!
    .onErrorReturn(throwable -> {!
        . . .!
    })!
    .flatMap(hotelId -> {!
        Observable<Hotel> i = RxObservable.from(client.target(“hotelInfo")) . . .!
        Observable<Boolean> available = RxObservable.from(. . .!
        return Observable.zip(i, available, . . .)!
    }!
    .take(10)!
    .toList()!
    . . .
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Summary

44

• When writing microservices in Java, JAX-RS is a natural choice to 
implement REST interface 
• Jersey brings several non-standard options that might be handy: 
– Lightweight container support 
–Monitoring features (auto-scaling) 
– Powerful client (+ reactive extensions) 

• There is more to come in future Jersey versions
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Q/A
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