
Continuous Delivery
Antipatterns

JavaOne 2015 
Andrzej Grzesik

andrzej grzesik
@ags313

andrzej@grzesik.it

andrzejgrzesik.info

mailto:andrzej@grzesik.it

my opinions are my own
disclaimer

@JavaOneConf @ags313
#JavaONE

please tweet!

questions?
just ask!

tl; dr:
release more often!

software
is a people problem

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

agile manifesto, 2001

delivery is
organization-specific

change scenario

1. prioritize problems

2. fix first

repeat

when system breaks

money is lost

policies as signs of failures past

control the unpleasant
or at least try

fear of releasing
(fear it’s not technical)

fear of things breaking

how to fight fear?

build trust

gently!

foreign customer, shaky component

send unit tests with code!
and wait

symptoms?

planned stagnation!

quiet periods

release ‘trains’

rc, beta, gold

solution: involve business
a.k.a. ‘manage stakeholders’

small changes
should happen quickly

great selling point

when system breaks

all roll-back!

to where? from where?

problem:
no idea what is where

git push --force prod
#randomhashisbetterthannone

do: --version

better:
do semantic versioning

http://semver.org/

http://semver.org/

do: know what is where

do: know what is where
(have a dashboard)

glu
https://github.com/pongasoft/glu

https://github.com/pongasoft/glu

versions vs frontend

problem:
many teams/unstable code

multiple repo is OK
one for dev, one for releases

git flow is OK
http://nvie.com/posts/a-successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

personal favourite:
stable master

Build && Environments

ok, let’s have a pipeline

problem:
slow

solution:
paralellize

which part?

free:
more decoupled design

problem: recompiling

Implementing a Fibonacci

relevant to VMs, containers etc

how to replicate production?

do: use a binary repository

What about Docker?

save intermediary states

problem:
separate teams

release team
dealing with ‘danger‘

symptom:
dealing with danger

likes to be manual
‘job security‘

us vs them
‘leave me alone, I’m important’

release processes

curious release processes

Work expands so as to fill the
time available for its completion

Parkinson’s Law

too curious processes
lead to

unofficial releases

unofficial releases
(don’t do them)

Bunkers

solution:
encourage interactions

break && integrate

break && integrate
repeatedly

games are awesome!
repeat the event

problem:
manual infrastructure

infrastructure

we use chef, we’re safe
^^

automate everything!

Puppet vs Chef vs Ansible vs…
does not matter

did you test?

developers doing infrastructure

problem:
Env builds

slow?

problem:
internet

quiz

mem
ME WANTS!

need internet to build?

of course!

rubygems.org
cpan.org

maven.org

rubygems.org
cpan.org

maven.org
go down!

run your build without the
Internet

or at least try, you’ll learn fun things :-)

application
and environment

save time and nerves

binary repo/proxy/…

problem:
no runtime upgrade

mobile apps

webview is nice

frequent releases
make your user curious

make users say bye

change backend
you can

ask if new
features they want

forcing doesn’t work

problem:
deployment failures

idea from: paulklipp.com/blog

DEPLOYMENTS
DO YOU TRACK THEM?

FAILED DEPLOYMENT
PROCEDURE

ROLLBACK? OR DOWNTIME?

do: test your rollback

as you test your backups

problem:
state

long running ……

sagas?
http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

http://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

databases…

http://flywaydb.org

http://flywaydb.org

environments

love partial failures

do: build in switches

Do: apps are ENV AWARE

APIs

versioning APIs is hard

different versions, formats, lifecycle

version, document, publish
one place to learn them all

dev env

automate it!

chef, puppet, ansible, docker,
vagrant

pick any

Release!

Release!
…the Kraken

questions?
@JavaOneConf @ags313 #JavaONE

