


E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Servlet	4.0:	HTTP/2	and	ReacGve	
Programming	in	Java	EE	8	
	CON3629	

Shing	Wai	Chan	
Ed	Burns	
Servlet	SpecificaGon	Co-leads	
Java	EE	PlaPorm	Group	
October	2015	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	following	is	intended	to	outline	our	general	product	direcGon.	It	is	intended	for	
informaGon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcGonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Gming	of	any	features	or	
funcGonality	described	for	Oracle’s	products	remains	at	the	sole	discreGon	of	Oracle.	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Classroom	Training	

Learning	SubscripGon	

Live	Virtual	Class	

Training	On	Demand	

Keep	Learning	with	Oracle	University	

educa=on.oracle.com	

Cloud	

Technology	

ApplicaGons	

Industries	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

3	

4	

5	

E	

6	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

3	

4	

5	

7	 E	

6	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Why	HTTP/2?	

	
	

A	Real	Life	Example	

index.html	

style1.css	

style2.css	
.	
.	
.	
	

script1.js	

script9.js	

pic1.jpg	

pic8.jpg	

.	

.	

.	
	

photo1.png	

photo2.png	

.	

.	

.	
	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Why	HTTP/2?	

• HTTP	Pipelining	
• Head-of-Line	blocking	

Problems	in	HTTP/1.1	

style1.css	
style2.css	

Client	 Server	

index.html	

index.html	

style1.css	
style2.css	
script1.js	

.	

.	

.	

script2.js	

.	

.	

.	

script1.js	
script2.js	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Why	HTTP/2?	

•  Inefficient	use	of	TCP	sockets	
• Max	number	of	connecGons	per	host	
	

Problems	in	HTTP/1.1	

Client	 Server	Client	 Server	

Client	 Server	

Client	 Server	

Client	 Server	

Client	 Server	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Why	HTTP/2?	

• Much	of	what	we	do	in	web-apps	is	a	hack	to	work	around	shortcomings	in	
HTTP/1.1	
– File	concatenaGon	and	image	sprites	
– Domain	sharding	
– Inlined	assets	

	

What	is	an	op=miza=on?	

11	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

3	

4	

5	

12	 E	

6	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	is	really	just	a	new	transport	
layer	underneath	HTTP/1.1	
– same	request/response	model	
– no	new	methods	
– no	new	headers	
– no	new	usage	paderns	from	
applicaGon	layer	
– no	new	usage	of	URL	spec	and	other	
lower	level	specs	

Network	Programming	Review	

13	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Standing	on	the	Shoulders	

14	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

15	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

16	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

17	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

18	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

19	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

20	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

21	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• HTTP/1.0	
– Sockets	are	a	throwaway	resource	
– SpecificaGon	says	very	lidle	about	how	
sockets	are	to	be	used	
– Browsers	free	to	open	many	sockets	to	
the	same	server	

Network	Programming	Review	

22	

Credit:	chrisjstanley	flickr	

The	Socket	Angle	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

23	

The	Socket	Angle	
• HTTP/2	
– Sockets	seen	as	a	scarce	resource	
– SpecificaGon	says	much	about	how	
they	are	to	be	used	
– Only	one	open	per	server	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	
The	Socket	Angle	

Client	 Server	Client	 Server	

Client	 Server	

Client	 Server	

Client	 Server	

Client	 Server	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	
Solu=on	in	HTTP/2	

Client	 Server	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

• HTTP/1.0	was	designed	to	be	easy	to	implement	with	contemporary	
development	pracGces	of	1991	
– text	based	protocol	
– leaves	flow	control	to	the	TCP	layer	
– easy	to	write	a	parser	
– simple	socket	lifecycle	

The	Adop=on	Angle	

26	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Network	Programming	Review	

• HTTP/2	is	much	more	complicated	to	implement	
– state	machine	
– header	compression	
– binary	framing	(arguably	easier	than	text	based	for	parsing)	

The	Adop=on	Angle	

27	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• HTTP/2	is	much	more	complicated	
to	implement	
– No	more	
telnet host 80	
GET	/somepage.html	\r\n\r\n!

28	

Network	Programming	Review	
The	Adop=on	Angle	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• HTTP/2	is	much	more	complicated	
to	implement	
– No	more	
telnet host 80	
GET	/somepage.html	\r\n\r\n!

29	

Network	Programming	Review	
The	Adop=on	Angle	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Big	Ticket	Feature	Review	
•  Request/Response	mulGplexing	
•  Binary	Framing	
•  Stream	PrioriGzaGon	
•  Server	Push	
•  Header	Compression	
•  Upgrade	from	HTTP/1.1	

•  ALPN	
•  101	Switching	Protocols	

30	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 31	

HTTP/2	Big	Ticket	Feature	Review	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Request	Response	MulGplexing	

•  Fully	bi-direcGonal	
•  Enabled	by	defining	some	terms	
– Connec&on	
A	TCP	socket	
– Stream	
A	“channel”	within	a	connecGon	
– Message		
A	logical	message,	such	as	a	request	or	a	response	
– Frame	
The	smallest	unit	of	communicaGon	in	HTTP/2.	

32	

Lets	you	do	more	things	with	a	single	TCP	connec=on	
	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Request	Response	MulGplexing	

33	

Connec=ons,	Streams,	Messages,	Frames	
	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Request	Response	MulGplexing	

• Once	you	break	the	communicaGon	down	into	frames,	you	can	interweave	
the	logical	streams	over	a	single	TCP	connecGon.	
•  Yet	another	idea	from	the	1960s	is	new	again.	

34	

Connec=ons,	Streams,	Messages,	Frames	
	

Browser
ServerSingle TCP connection for HTTP 2

STREAM'4'
HEADERS'

STREAM'9'
HEADERS'

STREAM'7'
DATA'

STREAM'7'
HEADERS'

STREAM'2'
HEADERS'

STREAM'2'
DATA'

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Binary	Framing	

•  Solves	Head-Of-Line	(HOL)	blocking	problem	
	
	
	
	
	

	
•  Type	field	can	be	DATA,	HEADERS,	PRIORITY,	RST_STREAM,	SETTINGS,	
PUSH_PROMISE,	PING,	GOAWAY,	WINDOW_UPDATE,	CONTINUATION	

35	

Enabled	by	dumping	newline	delimited	ASCII	
	

Length	(24)	

Type	(8)	 Flags	(8)	

R Stream	Iden=fier	(31)	

Frame	Payload	(0	…)	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Binary	Framing	

GET	/index.html	HTTP/1.1	
Host:	example.com	
Accept:	text/html	

36	

Example	1	
	

HEADERS	
				+	END_STREAM	
				+	END_HEADERS	
								:method:	GET	
								:scheme:	hdp	
								:path:	/index.html	
								:authority:	example.org	
								accept:	text/html	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Binary	Framing	

HTTP/1.1	200	OK	
Content-Length:	11	
Content-Type:	text/html	
	
Hello	World	

37	

Example	2	
	

HEADERS	
				-	END_STREAM	
				+	END_HEADERS	
								:status:	200	
								content-length:	11	
								content-type:	text/html	
	
DATA	
				+	END_STREAM	
Hello	World	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Header	Compression	

• ObservaGon:	most	of	the	headers	
are	the	same	in	a	given	connecGon	
– Host:	Accept:	user-agent:	etc.	

• Why	send	them	every	Gme?	
• Have	the	server	and	the	client	keep	
tables	of	headers,	then	just	send	
references	and	updates	to	the	
tables.	

38	

Known	as	HPACK	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Stream	PrioriGzaGon	

•  Stream	Dependency	in	HEADERS	Frame	
• PRIORITY	frame	type	
• An	addiGonal	40	bytes	
– Stream	id	(31)	
– Weight	(8):	[1,	256]		
– Exclusive	bit	(1)	

• Only	a	suggesGon	
	

39	
S	

A	

B	 C	

4	 12	

A	

B	 C	D	

4	 16	 12	

exclusive	=	0	

A	

B	 C	

D	

4	 12	

16	

exclusive	=	1	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Server	Push	

•  Eliminates	the	need	for	resource	inlining.	
•  Lets	the	server	populate	the	browser’s	cache	in	advance	of	the	browser	
asking	for	the	resource	to	put	in	the	cache.	
• No	corresponding	JavaScript	API,	but	can	be	combined	with	SSE	
– Server	pushes	stuff	into	the	browser’s	cache.	
– Server	uses	SSE	to	tell	the	browser	to	go	fetch	it	(but	we	know	it’s	already	in	the	
browser’s	cache).	

40	
S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

HTTP/2	Upgrade	from	HTTP/1.1	

• Not	secure	(h2c)	
– We	have	to	use	port	80	
– Use	exisGng	101	Switching	Protocols		from	HTTP/1.1	

•  Secure	(h2)	
– ApplicaGon	Layer	Protocol	NegoGaGon	(ALPN)	

41	

Secure	or	not-secure?	
	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CriGcism	of	HTTP/2	

• Poul	Henning-Kamp's	rant	just	before	WGLC	
– hdp://queue.acm.org/detail.cfm?id=2716278	

Everybody's	a	Cri=c	

42	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CriGcism	of	HTTP/2	

• Poul	Henning-Kamp's	rant	just	before	WGLC	
– hdp://queue.acm.org/detail.cfm?id=2716278	

Everybody's	a	Cri=c	

43	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CriGcism	of	HTTP/2	

• Poul	Henning-Kamp's	rant	just	before	WGLC	
– hdp://queue.acm.org/detail.cfm?id=2716278	

Everybody's	a	Cri=c	

44	

Credit:	Michael	Fritz	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

CriGcism	of	HTTP/2	

• HOL	blocking	is	sGll	a	problem,	just	shuffled	around	
– HOL	blocking	can	sGll	happen	in	HEADERS	frames	

• No	h2c	in	Firefox	or	Chrome	
– MenGon	the	IETF	RFC-7258	

• Carbon	footprint	for	all	that	HPACK		encoding/decoding	
• Numerous	new	DoS	adack	vectors	
• HTTP/2	is	orthogonal	to	WebSocket	

Everybody's	a	Cri=c	

45	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Don't	take	my	word	for	it	
• HTTP/2	isn't	one	spec,	it's	two	specs	
– HTTP/2	protocol	
– HPACK	

• Built	on	top	of	many	other	specs	

46	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Don't	take	my	word	for	it	

47	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Don't	take	my	word	for	it	

48	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

Why	HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

4	

5	

49	 E	

6	

3	

2	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ReacGve	Programming	

50	

Responsive	

Message	Driven	

Resilient	ElasGc	

image	credit:	reacGvemanifesto.org	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	ReacGve	Programming	(JEP	266)	

51	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Example	

52	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SubmissionPublisher<R>	
• Reactive-stream	publishers	
– On	drop	handling	and/or	blocking	for	flow	control	

• Constructor	parameters	
– Executor	
– int	maxBufferCapacity	for	each	subscriber’s	buffer	
– BiConsumer<?	super	Flow.Subscriber<?	Super	R>,?	super	Throwable>	handler	
	

53	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SubmissionPublisher<R>	
• Methods	
– int	submit(R	item)	
•  result:	the	esGmated	maximum	lag	(number	of	items	submided	but	not	yet	consumed)	among	all	
current	subscribers	

– int	offer(R	item,	BiPredicate<Flow.Subscriber<?	Super	R>,?	super	R>	onDrop)	
•  result:	if	negaGve,	the	(negaGve)	number	of	drops;	otherwise	an	esGmate	of	maximum	lag	

– ...	
	

54	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Asynchronous	in	Servlet	3.0	

• ServletRequest#startAsync	
• AsyncContext	
– #addListener,	#dispatch,	#complete	

• AsyncListener	
– #onComplete,	#onError,	#onStartAsync,	#onTimeout	

•  Event-driven	
– Server-Sent	Events	

Async	in	Java	EE	6!	

55	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Non-blocking	IO	in	Servlet	3.1	

• ServletInputStream	
– #setReadListener,	#isReady	

• ServletOutputStream	
– #setWriteListener,	#isReady	

• ReadListener	
– #onDataAvailable,	#onAllDataRead,	#onError	

• WriteListener	
– #onWritePossible,	#onError	

56	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Pull	delivery	(epoll	style)	
• Push	delivery	
– Explicit	flow-control	signals	
– Poll	based	flow-control	

57	

	
	

Servlet	4.0	ReacGve	Programming	on	Flow	Control?	 STILL	U
N
DER	DISCU

SSIO
N
	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

4	

5	

58	 S	

3	

6	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

4	

3	

5	

59	 S	

6	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Allow	frameworks	to	effecGvely	
leverage	server	push	
– flexible	strategies	for	leveraging	push	

•  Leverage	ALPN	

AbstracGons	Endure	

60	

Servlet	API	is	Well	PosiGoned	to	Enable	HTTP/2	OpGmizaGons	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  ExisGng	API	is	designed	for	One	Request	==	One	Response.	
• HTTP/2	destroys	this	assumpGon.	
•  It	will	be	challenging	to	do	jusGce	to	the	new	reality	of	One	Request	==	One	
or	More	Responses.			
• We	must	not	simply	bolt	the	“One	or	More	Responses”	concept	onto	some	
convenient	part	of	the	exisGng	API.	

61	

Challenges	in	Exposing	HTTP/2	Features	in	Servlet	API	
	

Servlet	4.0	Big	Ticket	New	Features	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Request/Response	mulGplexing	
• Binary	Framing	
•  Stream	PrioriGzaGon	
•  Server	Push	
• Header	Compression	
• Upgrade	from	HTTP/1.1	
– ALPN	
– 101	Switching	Protocols	

62	

HTTP/2	Features	
Servlet	4.0	Big	Ticket	New	Features	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Request/Response	mulGplexing	
• Binary	Framing	
•  Stream	PrioriGzaGon	
•  Server	Push	
• Header	Compression	
• Upgrade	from	HTTP/1.1	
– ALPN	
– 101	Switching	Protocols	

63	

HTTP/2	Features	Poten=ally	Exposed	in	Servlet	API	
	

Servlet	4.0	Big	Ticket	New	Features	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Servlet	4.0	Big	Ticket	New	Features	
• HTTP/2	Required,	including	ALPN	and	HPACK	
• HTTP/2	Server	Push	
– Push	resource	to	client	for	a	given	url	and	headers	
– Not	at	all	a	replacement	for	WebSocket	
– Really	useful	for	frameworks	that	build	on	Servlet,	such	as	JSF	
– Builder	API	

•  Ease	of	Use	

64	 S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

javax.servlet.hdp.PushBuilder	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 66	

Server	Push	via	Builder	API	
	

Servlet	4.0	
Big	Ticket	
New	Features	

S	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Server	Push	

public	class	FacesServlet	implements	Servlet	{	
public	void	service(ServletRequest	req,	
																				ServletResponse	resp)	throws	IOException,	ServletException	{	
				//..	
				HttpServletRequest	request	=	(HttpServletRequest)	req;	
				try	{	
								ResourceHandler	handler	=	
												context.getApplication().getResourceHandler();	
								if	(handler.isResourceRequest(context))	{	
												handler.handleResourceRequest(context);	
								}	else	{	
												lifecycle.attachWindow(context);	
												lifecycle.execute(context);	
												lifecycle.render(context);	
								}	
				}					
}	

Example	of	Poten=al	Use	from	JSF	

67	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Server	Push	

public	class	ExternalContextImpl	extends	ExternalContext	{	
				//…	
				public	String	encodeResourceURL(String	url)	{	
								if	(null	==	url)	{	
												String	message	=	MessageUtils.getExceptionMessageString	
																(MessageUtils.NULL_PARAMETERS_ERROR_MESSAGE_ID,	"url");	
												throw	new	NullPointerException(message);	
								}	
									
								((HttpServletRequest)	request).getPushBuilder().path(url).push();	
								return	((HttpServletResponse)	response).encodeURL(url);	
				}	
				//…	
	
}	

Example	of	Poten=al	Use	from	JSF	

68	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Add	Java	SE	8	default	methods	
– ServletContextAttributeListener,	ServletContextListener,	
ServletRequestAttributeListener,	ServletRequestListener,	
HttpSessionActivationListener,	HttpSessionAttributeListener,	
HttpSessionBindingListener.java,	HttpSessionListener	

• Add	default	to	Filter#init,	#destroy	
• Add		GenericFilter	and	HttpFilter	
• <default-context-path>	element	in	web.xml	

69	

	
	

Servlet	4.0	Ease	of	Use	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

3	

5	

4	

70	 E	

6	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2	
•  JEP	110	hdp://openjdk.java.net/jeps/110	
•  Easy	to	use	API	
• Covers	only	the	most	common	use	cases	
•  Supports	both	HTTP/1.1	and	2	
• Builds	on	Java	API	classes	going	back	to	Java	1.2!	

71	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2	

72	

HdpClient	HdpClient.Builder	

HdpRequest.Builder	

HdpRequest	HdpRequest	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2	

• A	handful	of	classes	
– HdpClient,	built	by	HdpClient.Builder	
•  Holds	informaGon	for	creaGng	one	or	more	HdpRequests	

– HdpRequest,	built	by	HdpRequest.Builder	
•  one	request/response	interacGon	

– HdpResponse	
– Body	Processors	
•  HdpRequestBodyProcessor	
•  HdpResponseBodyProcessor	

Small	footprint	

73	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2	

• Blocking	mode:	one	thread	per	request/response	
– send	request	
– get	response	

• Non-blocking	mode	
– Using	ExecutorService	and	CompletableFuture	

•  Full	support	for	HTTP/2	Server	Push	

Small	footprint	

74	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2	

HttpResponse	response	=	HttpRequest	
										.create(new	URI("http://www.foo.com"))	
														.headers("Foo",	"foovalue",	"Bar",	"barvalue”)	
														.GET()	
														.response();	
	
						int	statusCode	=	response.statusCode();	
						String	responseBody	=	response.body(asString());	
	
	

75	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2:	Simple	Case:	Blocking	
//Simple	blocking	--	all	execution	from	calling	thread	
HttpResponse	r1	=	HttpRequest.create(new	URI("http://www.foo.com/"))	
		.GET()	
		.response();	
int	responseCode	=	r1.statusCode());	
String	body	=	r1.body(asString());	
	
HttpResponse	r2	=	HttpRequest.create(new	URI("http://www.foo.com/"))	
		.GET()	
		.response();	
System.out.println("Response	was	"	+	r1.statusCode());	
	
Path	body	=	r2.body(asFile(Paths.get("/tmp/response.txt")));	
//	Content	stored	in	/tmp/response.txt	
HttpResponse	r3	=	HttpRequest.create(new	URI("http://www.foo.com/"))	
		.body(fromString("param1=1,	param2=2"))	
		.POST()	
		.response();	
Void	body	=	r3.body(ignoreBody());	//	body	is	Void	in	this	case	

	
76	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2:	Async	Case	
List<URI>	targets	=	...	//	fetch	list	of	URIs	async	and	store	in	Files	
List<CompletableFuture<File>>	futures	=	targets.stream()	
		.map(target	->	{	
				return	HttpRequest	
						.create(target).GET().responseAsync().thenCompose(response	->	{	
								Path	dest	=	Paths.get("base",	target.getPath());	
								if	(response.statusCode()	==	200)	{	
										return	response.bodyAsync(asFile(dest));	
								}	else	{	
										return	CompletableFuture.completedFuture(dest);	
								}	
						})	
						//	convert	Path	->	File	
						.thenApply((Path	dest)	->	{	
								return	dest.toFile();	
						});	
				}).collect(Collectors.toList());	
//	all	async	operations	waited	for	here	
CompletableFuture.allOf(futures.toArray(new	CompletableFuture<?>[0])).join();	

77	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	SE	9	Support	for	HTTP/2	

• NegoGaGon	of	HTTP/2	from	1.1	
– ALPN	or	plaintext	

•  Server	Push	
– Support	for	PUSH_PROMISE	frames	

• HPACK	parameters	

HTTP/2	features	

78	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Our	Plan	for	Your	Time	Investment	

Why	HTTP/2?	

HTTP/2	Big	Features	

Servlet	and	ReacGve	Programming	

How	Servlet	Might	Expose	These	Features	

Java	SE	9	Support	for	HTTP/2	

Summary	and	Current	Status	

1	

2	

3	

4	

6	

79	 E	

5	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	and	Current	Status	
•  Servlet	4.0	brings	HTTP/2	to	Java	EE	
– 100%	compliant	implementaGon	of	HTTP/2	
– Expose	key	feature	to	the	API	
•  Server	Push	

	

80	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	and	Current	Status:	HTTP/2	
• December	2015	Submit	HTTP/2	to	IESG	for	consideraGon	as	a	Proposed	
Standard	DONE	
•  January	2015	Submit	HTTP/2	to	RFC	Editor	DONE	
• May	2015	Publish	HTTP/2	as	an	RFC	7540/7541	DONE	

81	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	and	Current	Status	
•  JSR-369	formed	on	22	September	2014	
•  Early	Dra�	Review	posted	on	JCP.org	last	week!	

82	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	to	Get	Involved	
• Adopt	a	JSR	
– hdp://glassfish.org/adoptajsr/	

•  The	Aquarium	
– hdp://blogs.oracle.com/theaquarium/	

•  Java	EE	8	Reference	ImplementaGon	
– hdp://glasfish.org	

83	 E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	preceding	is	intended	to	outline	our	general	product	direcGon.	It	is	intended	for	
informaGon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcGonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Gming	of	any	features	or	
funcGonality	described	for	Oracle’s	products	remains	at	the	sole	discreGon	of	Oracle.	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Session	Surveys	

Help	us	help	you!!	
• Oracle	would	like	to	invite	you	to	take	a	moment	to	give	us	your	session	
feedback.	Your	feedback	will	help	us	to	improve	your	conference.		
• Please	be	sure	to	add	your	feedback	for	your	adended	sessions	by	using	
the	Mobile	Survey	or	in	Schedule	Builder.	

	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Other	Sessions	of	Interest	

•  The	Rise	of	1.0:	How	ReacGve	Streams	and	Akka	Streams	Change	the	JVM	
Ecosystem	[CON3633]	
Thursday,	Oct	29,	4:00	p.m.	|	Hilton—ConGnental	Ballroom	4	

E	



Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	




