
Konrad 'ktoso' Malawski
GeeCON 2014 @ Kraków, PL

Konrad `@ktosopl` Malawski @ LinkedIn 2015

streams
How reactive streams

change the JVM Ecosystem

&

Konrad `ktoso` Malawski

(we’re renaming soon!)

Akka Team,
Reactive Streams TCK,
Maintaining Akka Http

Konrad `@ktosopl` Malawski

akka.io
typesafe.com
geecon.org

Java.pl / KrakowScala.pl
sckrk.com / meetup.com/Paper-Cup @ London

GDGKrakow.pl
lambdakrk.pl

(we’re renaming soon!)

http://akka.io
http://typesafe.com
http://geecon.org
http://java.pl
http://krakowscala.pl
http://sckrk.com
http://www.meetup.com/Paper-Cup
http://gdgkrakow.pl
http://www.lambdakrk.pl

Nice to meet you!
Who are you guys?

Agenda for today:

• Story & landscape

• The Reactive Streams Protocol

• Akka Streams / Demo

• Akka Http / Demo

• Q/A?

Reactive Streams - story: early FRP

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf - Ingo Maier, Martin Odersky

https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors

https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

- .NETs’ Reactive Extensions

.NET 3.5

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Reactive Streams - story: 2013’s impls

~2013:

Reactive Programming
becoming widely adopted on JVM.

- Play introduced “Iteratees”
- Akka (2009) had Akka-IO (TCP etc.)
- Ben starts work on RxJava

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf - Ingo Maier, Martin Odersky

https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors

https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Teams discuss need for back-pressure
in simple user API.
Play’s Iteratee / Akka’s NACK in IO.

}

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Reactive Streams - story: 2013’s impls

Play Iteratees – pull back-pressure, difficult API

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf - Ingo Maier, Martin Odersky

https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors

https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Akka-IO – NACK back-pressure; low-level IO (Bytes); messaging API

RxJava – no back-pressure, nice API

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Reactive Streams - Play’s Iteratees

def fold[B](
 done: (A, Input[E]) => Promise[B],
 cont: (Input[E] => Iteratee[E, A]) => Promise[B],
 error: (String, Input[E]) => Promise[B]
): Promise[B]

// an iteratee that consumes chunkes of String and produces an Int
Iteratee[String,Int]

https://www.playframework.com/documentation/2.0/Iteratees

Feb 2013
Iteratees solved the back-pressure problem,
but were hard to use.

Iteratee & Enumeratee – Haskell inspired.

Play / Akka teams looking for common concept.

https://www.playframework.com/documentation/2.0/Iteratees

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

https://www.coursera.org/course/reactive

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

Goals:
- asynchronous
- never block (waste)
- safe (back-threads pressured)
- purely local abstraction
- allow synchronous impls.

Also, for our examples today:
- compatible with TCP

https://www.coursera.org/course/reactive

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

https://www.coursera.org/course/reactive

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

Soon after, the “Reactive Streams” expert group is formed.

Also joining the efforts: Doug Lea (Oracle), Endre Varga (Akka), Johannes Rudolph &  
Mathias Doenitz (Spray), and many others, including myself join the effort soon after.

https://www.coursera.org/course/reactive

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

Soon after, the “Reactive Streams” expert group is formed.

Also joining the efforts: Doug Lea (Oracle), Endre Varga (Akka), Johannes Rudolph &  
Mathias Doenitz (Spray), and many others, including myself join the effort soon after.

Reactive Streams - expert group founded

I ended up implementing much of the TCK.
Please use it, let me know if it needs improvements :-)

https://www.coursera.org/course/reactive

Reactive Streams - story: 2013’s impls

2014–2015:

Reactive Streams Spec & TCK
development, and implementations.

1.0 released on April 28th 2015,
with 5+ accompanying implementations.

2015
Proposed to be included with JDK9 by Doug Lea
via JEP-266 “More Concurrency Updates”

http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

http://openjdk.java.net/jeps/266
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

2014–2015:

Reactive Streams Spec & TCK
development, and implementations.

1.0 released on April 28th 2015,
with 5+ accompanying implementations.

2015
Proposed to be included with JDK9 by Doug Lea
via JEP-266 “More Concurrency Updates”

http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

Reactive Streams - story: 2013’s impls

http://openjdk.java.net/jeps/266
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

in a few words:

• Toolkit for building scalable distributed / concurrent apps.

• High Performance Actor Model implementation

• “share nothing” – messaging instead of sharing state

• millions of msgs, per actor, per second

• Supervision trees – built-in and mandatory

• Clustering and Http built-in

A

B

BarFoo

C

B
E

A

D

C

/Foo

/Foo/A

/Foo/A/B

/Foo/A/D

Guardian System Actor

Name resolution—like a file-system

Why back-pressure?

?

Why back-pressure?

So you’ve built your app and it’s awesome.

Why back-pressure?

Let’s not smash it horribly under load.

What is back-pressure?

?

What is back-pressure?

No no no…!
Not THAT Back-pressure!

No no no…!
Not THAT Back-pressure!

What is back-pressure?

Publisher[T] Subscriber[T]

Back-pressure explained

Fast Publisher Slow Subscriber

What if…?

Push + NACK model

Push + NACK model

Subscriber usually has some kind of buffer.

Push + NACK model

Push + NACK model

What if the buffer overflows?

Push + NACK model

Use bounded buffer,
drop messages + require re-sending

Push + NACK model

Kernel does this!
Routers do this!

(TCP)

Use bounded buffer,
drop messages + require re-sending

Push + NACK model

Increase buffer size…
Well, while you have memory available!

Push + NACK model

Push + NACK model

Negative ACKnowledgement

NACKing
Buffer overflow is imminent!

Telling the Publisher to slow down / stop sending…

NACKing

NACK did not make it in time,
because M was in-flight!

NACKing

What if…
We don’t need to back-pressure, because:

speed(publisher) < speed(subscriber)

We need low-overhead for “happy case”

No problem!

Fast Subscriber => no problem

Back-pressure?
Reactive-Streams

=
“Dynamic Push/Pull”

Fast Subscriber => no problem

Just push – not safe when Slow Subscriber

Just pull – too slow when Fast Subscriber

Reactive Streams: “dynamic push/pull”

Solution:
Dynamic adjustment

Just push – not safe when Slow Subscriber

Just pull – too slow when Fast Subscriber

Reactive Streams: “dynamic push/pull”

Slow Subscriber sees it’s buffer can take 3 elements.
Publisher will never blow up its buffer.

Reactive Streams: “dynamic push/pull”

Fast Publisher will send at-most 3 elements.
This is pull-based-backpressure.

Reactive Streams: “dynamic push/pull”

Fast Subscriber can issue more Request(n),
before more data arrives!

Reactive Streams: “dynamic push/pull”

Fast Subscriber can issue more Request(n),
before more data arrives.

Publisher can accumulate demand.

Reactive Streams: “dynamic push/pull”

Publisher accumulates total demand per subscriber.

Reactive Streams: accumulate demand

Total demand of elements is safe to publish.
Subscriber’s buffer will not overflow.

Reactive Streams: accumulate demand

Fast Subscriber can issue arbitrary large requests,
including “gimme all you got” (Long.MaxValue)

Reactive Streams: requesting “a lot”

http://reactive-streams.org

We want to make different implementations
co-operate with each other.

Reactive Streams: Inter Op

http://reactive-streams.org

http://reactive-streams.org

We want to make different implementations
co-operate with each other.

Reactive Streams: Inter Op

http://reactive-streams.org

RS is NOT a “daily use”, “end-user” API.
It’s an SPI - Service Provider Interface.

Reactive Streams: Inter-Op

https://en.wikipedia.org/wiki/Service_provider_interface

Service Provider Interface (SPI) is an API intended to be
implemented or extended by a third party.

https://en.wikipedia.org/wiki/Service_provider_interface

 EmbeddedApp.fromHandler(new Handler {
 override def handle(ctx: Context): Unit = {
 // RxJava Observable
 val intObs = Observable.from((1 to 10).asJava)

 // Reactive Streams Publisher
 val intPub = RxReactiveStreams.toPublisher(intObs)

 // Akka Streams Source
 val stringSource = Source(intPub).map(_.toString)

 // Reactive Streams Publisher
 val stringPub = stringSource.runWith(Sink.fanoutPublisher(1, 1))

 // Reactor Stream
 val linesStream = Streams.create(stringPub).map[String](
 new reactor.function.Function[String, String] {
 override def apply(in: String) = in + "\n"
 })

 // and now render the HTTP response (RatPack)
 ctx.render(ResponseChunks.stringChunks(linesStream))
 }

 }).test(new Consumer[TestHttpClient] {
 override def accept(client: TestHttpClient): Unit = {

Reactive Streams: Inter-Op

https://en.wikipedia.org/wiki/Service_provider_interface

https://en.wikipedia.org/wiki/Service_provider_interface

 EmbeddedApp.fromHandler(new Handler {
 override def handle(ctx: Context): Unit = {
 // RxJava Observable
 val intObs = Observable.from((1 to 10).asJava)

 // Reactive Streams Publisher
 val intPub = RxReactiveStreams.toPublisher(intObs)

 // Akka Streams Source
 val stringSource = Source(intPub).map(_.toString)

 // Reactive Streams Publisher
 val stringPub = stringSource.runWith(Sink.fanoutPublisher(1, 1))

 // Reactor Stream
 val linesStream = Streams.create(stringPub).map[String](
 new reactor.function.Function[String, String] {
 override def apply(in: String) = in + "\n"
 })

 // and now render the HTTP response (RatPack)
 ctx.render(ResponseChunks.stringChunks(linesStream))
 }

 }).test(new Consumer[TestHttpClient] {
 override def accept(client: TestHttpClient): Unit = {

Reactive Streams: Inter-Op

https://en.wikipedia.org/wiki/Service_provider_interface

https://en.wikipedia.org/wiki/Service_provider_interface

Akka Streams

streams

Akka Streams & HTTP

streams
& HTTP

Akka Streams in 20 seconds:
 // types:
 Source[Out, Mat]
 Flow[In, Out, Mat]
 Sink[In, Mat]

 // generally speaking, it's always:
 val ready = Source(???).via(flow).map(_ * 2).to(sink)

 val mat: Mat = ready.run()

 // the usual example:
 val f: Future[String] =
 Source.single(1).map(_.toString).runWith(Sink.head)

Proper static typing!

Akka Streams in 20 seconds:

// types: _
Source[Int, Unit]
 Flow[Int, String, Unit]
 Sink[String, Future[String]]

Source.single(1).map(_.toString).runWith(Sink.head)

Akka Streams in 20 seconds:

// types: _
Source[Int, Unit]
 Flow[Int, String, Unit]
 Sink[String, Future[String]]

Source.single(1).map(_.toString).runWith(Sink.head)

Akka HTTP

Joint effort of Spray and Akka teams.
Complete HTTP Server/Client implementation.

Soon prod ready, developed ~1.5 years.
Learns from Spray’s 3-4 years history.

Since the beginning with
streaming as first class citizen.

It’s turtles buffers all the way down!

Streaming from Akka HTTP

Streaming from Akka HTTP

Streaming from Akka HTTP

Streaming from Akka HTTP

Streaming from Akka HTTP
No demand from TCP

=
No demand upstream

=
Source won’t generate tweets

Streaming from Akka HTTP
No demand from TCP

=
No demand upstream

=
Source won’t generate tweets

=>

Streaming from Akka HTTP
No demand from TCP

=
No demand upstream

=
Source won’t generate tweets

=>
Bounded memory
stream processing!

Client / Server “JSON Streaming” demo

Demo time

Akka Streams

Hidden powers:

Parallelism
&&

Pipelining

Pipelining Pancakes

http://doc.akka.io/docs/akka-stream-and-http-experimental/1.0/scala/stream-parallelism.html

http://doc.akka.io/docs/akka-stream-and-http-experimental/1.0/scala/stream-parallelism.html

Pipelining

Pipelining

Pipelining

// Takes a scoop of batter and creates a pancake with one side cooked
val fryingPan1: Flow[ScoopOfBatter, HalfCookedPancake, Unit] =
 Flow[ScoopOfBatter].map { batter => HalfCookedPancake() }

// Finishes a half-cooked pancake
val fryingPan2: Flow[HalfCookedPancake, Pancake, Unit] =
 Flow[HalfCookedPancake].map { halfCooked => Pancake() }

// With the two frying pans we can fully cook pancakes
val pancakeChef: Flow[ScoopOfBatter, Pancake, Unit] =
 Flow[ScoopOfBatter].via(fryingPan1).via(fryingPan2)

Parallelism

???

Parallelism

Parallelism

val fryingPan: Flow[ScoopOfBatter, Pancake, Unit] =
 Flow[ScoopOfBatter].map { batter => Pancake() }

val pancakeChef: Flow[ScoopOfBatter, Pancake, Unit] = Flow() {
 implicit builder =>

 val dispatchBatter = builder.add(Balance[ScoopOfBatter](2))
 val mergePancakes = builder.add(Merge[Pancake](2))

 dispatchBatter.out(0) ~> fryingPan ~> mergePancakes.in(0)
 dispatchBatter.out(1) ~> fryingPan ~> mergePancakes.in(1)

 (dispatchBatter.in, mergePancakes.out)
}

Parallelism

 val fryingPanFun: ScoopOfBatter ⇒ Future[Pancake] =
 batter ⇒ Future.successful(Pancake())

 val pancakeChef: Flow[ScoopOfBatter, Pancake, Unit] =
 Flow[ScoopOfBatter].mapAsync(parallelism = 2)(fryingPanFun)

Or simply “mapAsync”:

Parallelism

val fryingPan: Flow[ScoopOfBatter, Pancake, Unit] =
 Flow[ScoopOfBatter].map { batter => Pancake() }

val pancakeChef: Flow[ScoopOfBatter, Pancake, Unit] = Flow() {
 implicit builder =>

 val dispatchBatter = builder.add(Balance[ScoopOfBatter](2))
 val mergePancakes = builder.add(Merge[Pancake](2))

 dispatchBatter.out(0) ~> fryingPan ~> mergePancakes.in(0)
 dispatchBatter.out(1) ~> fryingPan ~> mergePancakes.in(1)

 (dispatchBatter.in, mergePancakes.out)
}

Pipelining && Parallelism

Parallelism
&&

Pipelining

do the heavy-work for you.

10/26/2015 spray-can: add websockets support (client & server) · Issue #134 · spray/spray

https://github.com/spray/spray/issues/134 1/13

� Pull requests Issues GistThis repository Search � P

2,092 496197D Watch ! Star � Forkspray / spray�

R

�

�

m

:

and others

Labels

Milestone

akka-http

Assignee

No one assigned

111 participants

spray-can: add websockets support (client & server) #134
 Closed sirthias opened this issue on Sep 4, 2012 · 129 comments

New issue

Feature

Notifications

You’re not receiving
notifications from this
thread.

� Subscribe

Ownersirthias commented on Sep 4, 2012

No description provided.

analytically commented on Oct 23, 2012

+1

tommcp commented on Nov 1, 2012

+1

t3hnar commented on Nov 10, 2012

+1

alexbool commented on Nov 10, 2012

+1

olger commented on Nov 16, 2012

+1

pjean commented on Nov 29, 2012

+1

edgurgel commented on Nov 29, 2012

+1

zerni commented on Dec 10, 2012

+1

Bathtor commented on Dec 10, 2012

+1

csenol commented on Dec 16, 2012

+1

WebSockets
A.K.A.

“Spray’s single most upvoted
feature request ever”

98 * “+1”

Spray’s most requested feature ever:
WebSockets

 path("ws") {
 val handler: Flow[Message, Message] = ???

 handleWebsocketMessages(handler)
 }

Spray’s most requested feature ever:
WebSockets

 path("ws") {
 val handler: Flow[Message, Message] = ???

 handleWebsocketMessages(handler)
 }

Spray’s most requested feature ever:
WebSockets
 path("ws") {
 val handler = Flow.fromSinkAndSource(
 Sink.ignore,
 Source.single(TextMessage("Hello World!”)))

 handleWebsocketMessages(handler)
 }

Summing up…

Summing up…

buffers, buffers everywhere!

https://dev.twitter.com/streaming/overview/request-parameters#stallwarnings

https://dev.twitter.com/streaming/overview/request-parameters#stallwarnings

JEP-266 – soon…!

public final class Flow {
 private Flow() {} // uninstantiable

 @FunctionalInterface
 public static interface Publisher<T> {
 public void subscribe(Subscriber<? super T> subscriber);
 }

 public static interface Subscriber<T> {
 public void onSubscribe(Subscription subscription);
 public void onNext(T item);
 public void onError(Throwable throwable);
 public void onComplete();
 }

 public static interface Subscription {
 public void request(long n);
 public void cancel();
 }

 public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {
 }
}

Roadmap Update: Streams & HTTP

Already pretty mature and complete implementation.
WebSockets!

Play 2.5 (2.5.M1) uses Akka Streams.
(Scala || Java) DSL == same power.

Last phases of polishing up APIs and features.
1.1 release in coming weeks.

After 1.1, merging with Akka 2.4 (experimental module).

Akka 2.4 requires JDK8.
(that’s about time to do so!)

• Reactive Platform
• Remoting / Cluster: Docker networking support
• Cluster: Split Brain Resolver (beta)
• Akka Persistence: Cross-Scala-version snapshot deserializer
• Java 6: Extended LTS

• Akka 2.4.0 (released this month, binary compatible with 2.3)

• Cluster Tools promoted to stable!

• Persistence promoted to stable!

• Persistence Queries (experimental)
• Akka Typed (experimental)
• Distributed Data (experimental)
• Akka Streams (currently 1.0, will be included in 2.4.x eventually)

Roadmap Update: Akka

Links
• The projects:

• akka.io
• typesafe.com/products/typesafe-reactive-platform
• reactive-streams.org 

• Viktor Klang’s interview with all RS founding members
• Akka HTTP in depth with Mathias and Johannes @ Scala.World

• Akka User - mailing list:
• https://groups.google.com/group/akka-user

• Community chat:
• http://gitter.im/akka/akka

http://akka.io
https://www.typesafe.com/products/typesafe-reactive-platform
http://reactive-streams.org
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.i17rwbjx6
https://www.youtube.com/watch?v=6VBn9V3S2aQ
https://groups.google.com/group/akka-user
http://gitter.im/akka/akka

Thanks!

onNext(Q/A)
(Now’s the time to ask things!)

ktoso @ typesafe.com
twitter: ktosopl

github: ktoso
team blog: letitcrash.com

home: akka.io

http://twitter.com/ktosopl
http://github.com/ktoso
http://letitcrash.com
http://akka.io

©Typesafe 2015 – All Rights Reserved

