
Secure JEE Architecture and Programming 101

Mario-Leander Reimer, Chief Technologist
Wednesday, Oct 28 @ JavaOne 2015

2

Security seems to be the

most underrated non functional

requirement in software

engineering.

class Security Model

Security in early stages

Security Analysis
Secure Programming

Secure Architecture

Security Target

Security Requirement

Security Threat
Attacker

Security Architecture

Use Case

Entity

Safeguard

Implementation

Security components Gatekeeper Channels

Insecurity

3

You are here!

4

So what ‘s on the agenda?

o T h e a n a t o m y o f t w o p r o m i n e n t s e c u r i t y v u l n e r a b i l i t i e s

o J a v a a s a s e c u r e p r o g r a m m i n g l a n g u a g e a n d p l a t f o r m

o S e c u r i t y A n a l y s i s : a t t a c k i n g a n i n s e c u r e J E E w e b a p p

o S e c u r e P r o g r a m m i n g A w a r e n e s s : 2 2 1 r u l e s f o r m o r e s e c u r e c o d e

o S e c u r e A r c h i t e c t u r e : c o n c e p t s a n d b a s i c J E E f e a t u r e s

5

How the Heartbleed Bug Works http://xkcd.com/1354/

6

The Java exploit for Heartbleed only had 186 lines of code.
The patch for Heartblead only added 8 lines of code.

Bounds check for the
correct record length

7

Apple‘s SSL bug: goto fail;

8

Apple‘s SSL bug: goto fail;

Success!? Not really what
you would expect.

Always goto fail;

Never called.

9

Probably all security

vulnerabilities are caused by

poor, negligent or just plain

unsafe programming!

Java CPU and PSU Releases Explained.

10

o Java SE Critical Patch Updates (CPU)

oOdd version numbers: 8u31, 8u05, 7u71, 7u65, 7u45, ...

o Fixes for known security vulnerabilities

o Further severe bug fixes

oRecommendation: upgrade as soon as possible after it has been released

o Java SE Patch Set Updates (PSU)

o Even version numbers: 8u40, 8u20, 7u72, 7u60, ...

oAll fixes of the CPU release

o Further non-critical fixes and enhancements

oRecommendation: only upgrade if non-critical fix is required

http://www.oracle.com/technetwork/java/javase/cpu-psu-explained-2331472.html

Java has been designed with security in mind from the start.
Java is a secure programming language and platform.

11

o The JVM and the Java language provide several features and APIs for secure programming

o Bytecode verification, memory management, sandbox model, security manager, ...

o The java.security package in JDK8 contains 15 interfaces, 54 classes, 3 enums, 16 exceptions

oConfigurable, fine-grained access control

o cryptographic operations such as message digest and signature generation

oSupport for generation and storage of cryptographic public keys

o The security features are constantly improved and developed, such as resource consumption

management, object-level protection, arbitrary permission grouping, ...

https://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html

12

The evolution of the Java security model.
It hasn‘t changed much since.

JDK 1.0 Security Model
(1996)

JDK 1.1 Security Model
(1997)

Java 2 Security Model
(1998)

http://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-specTOC.fm.html

The default Java security policy file is very restrictive. But …

13

$JAVA_HOME/
jre/lib/security/java.policy

14

… if you allow everything and don‘t pay attention, don‘t blame others.

-Djava.security.manager
-Djava.security.policy=

! ?
? ??
!

http://openbook.rheinwerk-verlag.de/java7/1507_22_002.html

15

No magic provided!

It us up to us developers and

architects to use and apply the

Java security features.

16

How do I know my web application

has security vulnerabilities?

17

OWASP Zed Attack Proxy
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Attack!

18

19

One inconsiderate line of code can be the root of all evil …

Usage of raw
request parameter

20

How can we do better?

Only 3 sources and 221 rules for more secure and better code.

21

The CERT™ Oracle™ Secure Coding Standard for Java
Fred Long, Dhruv Mohindra, Robert C. Seacord,
Dean F. Sutherland, David Svoboda
Rules available online at www.securecoding.cert.org

Java Coding Guidelines
Fred Long, Dhruv Mohindra, Robert C. Seacord,
Dean F. Sutherland, David Svoboda

Secure Coding Guidelines for Java SE
Updated for Java SE 8, Version: 5.0, Last updated: 25 September 2014
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

http://www.securecoding.cert.org/
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

22

23

24

25

Secure
Programming

MSC03-J. Never hard code sensitive information.

26

What‘s the problem?

Sensitive information should never be hard coded. If the system is compromised, this

information can be easily retrieved. Access to further resources may be possible.

How can you exploit the code?

Simply by disassembling the relevant code, using tools like javap, JAD, dirtyJOE.

How can we do better?

o Obtain information from a secure configuration file, system property or environment var.

o Use infrastructure security features such as password aliases in Glassfish.

27

A very very very … bad example of a login component.

Please don‘t do this!

28

javap -c
InsecureLogin.class

29

javap -c
MoreSecureLogin.class

30

Using password aliases is a much more secure option.
And Java EE Security API 1.0 (JSR 375) is on it‘s way.

asadmin> create-password-alias
Enter the value for the aliasname operand> secpro_password_alias
Enter the alias password> qwertz123
Enter the alias password again> qwertz123
Command create-password-alias executed successfully.

-Dmaster.password=${ALIAS=secpro_password_alias}

secure.password=tvtCEwfdmUAzXaKKlYQM6XYIjgQHzCZHZG/8SbdBQ+Vk9yH7PDK+x0aIgSZ2pvfWbC0avXyF
3Ow+tWleYlnideYwXpyJXrkhv+DRdQthEmM=

secure.password.Production=r7mCJogt0VUI8s3UKJ1IHgCJ65pllW8q8uZ39+KjsvT910/iBppLt/8g
NTGok/w1wscS7E24zLQKCOBbBZTU9A==

PBKDF2WithHmacSHA1

This will replaced by the
container automatically.

MLR01-J. Limit lifetime and visibility of sensitive information.

31

What‘s the problem?

Application scoped security information also ends up in your heap memory. The garbage

collection only frees unreachable objects.

How can you exploit the code?

By taking a heap dump and analysing it, using tools like jps + jmap, VisualVM, Eclipse MAT

How can we do better?

o Use security sensitive information only method locally (parameters, variables)

o Clear or overwrite sensitive information after usage, e.g. Arrays.fill(chars, \0);

32

Taking heap dumps with JDK tools is simple. Use the command
line or tools like Java VisualVM.

33

Heap Dump
Analysis.

34

Clear sensitive information after usage.

Limited lifetime of
sensitive information:
method parameters.

Magic happens here!
Sensitive information is
replaced with junk data.

35

Heap Dump
Analysis.

select s from java.lang.String s where s.toString() == '???????'

ENV01-J. Place all security-sensitive code in a single JAR and sign
and seal it.

36

What‘s the problem?

Without additional protection a JAR can be modified by an attacker. Any package or package

private visibility can be circumvented in open packages.

How can you exploit the code?

o Exchange of classes, direct manipulation of byte code or important configuration files.

o Malicious inheritance with package and class definitions in foreign JAR files.

How can we do better?

Sign the relevant JARs to detect modification. Seal the JAR to prevent malicious inheritance.

37

USERNAME.equals(username) &&
Arrays.equals(PASSWORD, password)

00000000 : ldc "SomeUsername"
00000002 : aload_1
00000003 : invokevirtual boolean java.lang.String.equals(java.lang.Object)
00000006 : ifeq pos.00000017
00000009 : getstatic char[] de.qaware.campus.secpro.env01.CrackedLogin.PASSWORD
0000000C : aload_2
0000000D : invokestatic boolean java.util.Arrays.equals(char[], char[])
00000010 : ifeq pos.00000017
00000013 : iconst_1
00000014 : goto pos.00000018
00000017 : iconst_0
00000018 : ireturn

38

!USERNAME.equals(username) &&
!Arrays.equals(PASSWORD, password)

00000000 : ldc "SomeUsername"
00000002 : aload_1
00000003 : invokevirtual boolean java.lang.String.equals(java.lang.Object)
00000006 : ifne pos.00000017
00000009 : getstatic char[] de.qaware.campus.secpro.env01.CrackedLogin.PASSWORD
0000000C : aload_2
0000000D : invokestatic boolean java.util.Arrays.equals(char[], char[])
00000010 : ifne pos.00000017
00000013 : iconst_1
00000014 : goto pos.00000018
00000017 : iconst_0
00000018 : ireturn

ifne
9A 00 11

ifeq
99 00 11

39

Example MANIFEST.MF for a signed and sealed JAR.

A sealed JAR specifies that all packages
defined by that JAR are sealed.

Each file in the archive is
given a digest entry in the
archive's manifest.

More info: http://docs.oracle.com/javase/tutorial/deployment/jar/intro.html

40

Example MANIFEST.MF for a signed and sealed JAR.

41

Verify the signer certificate of a given class against a known and
secured keystore.

MLR02-J. Obfuscate all security-sensitive code.

42

What‘s the problem?

Clean Code. Good programming style. Debugging symbols. Basically, everything that helps us

developers is also helpful to the attacker.

How can you exploit the code?

Simply by disassembling the relevant code, using tools like javap, JAD, dirtyJOE.

How can we do better?

Obfuscate the security sensitive code with tools like ProGuard, yGuard, et.al.

43

Obfuscation leads to reduced readability, cryptic variable names,
inlining of method calls, misleading branches.

44

Only up to 10% of the bytecode

instructions in modern JEE

applications are your code!!!

45

At least 90% of your application

pose a potential security risk!

46

About 26% of the downloaded

libraries on Maven Central

contain known vulnerabilities!

https://www.owasp.org/index.php/OWASP_AppSec_DC_2012/The_Unfortunate_Reality_of_Insecure_Libraries

47

OWASP Top 10 2013
A9 should be in the Top 3.

Know your dependencies. The secure usage of open source
components and frameworks is key to application security.

48

o But how do I secure my application against security issues in open source software?

o Option a) Do not use open source software. Write everything yourself!  Not very realistic!.

o Option b) Have clear guidelines and rules for the responsible usage of open source software.

o Upgrading your dependencies to the latest versions is crucial. Urgent security fixes are usually

only applied to the latest release.

oMonitor security issues of used frameworks in public databases (CVE, NVD) and mailing lists.

o Implement security decorators to disable or secure weak and unused framework functionality.

49

mvn versions:display-dependency-updates

[INFO] The following dependencies in Dependencies have newer versions:
[INFO] com.sun.faces:jsf-api ... 2.1.10 -> 2.2.12
[INFO] com.sun.jersey:jersey-client 1.9.1 -> 1.19
[INFO] commons-fileupload:commons-fileupload 1.2.1 -> 1.3.1
[INFO] org.apache.httpcomponents:httpclient 4.2.1 -> 4.5.1
[INFO] org.apache.solr:solr-core 4.6.1 -> 5.3.1

50

mvn org.owasp:dependency-check-maven:check

o 49 scanned dependencies
o 6 vulnerable dependencies
o 8 found vulnerabilities

51

mvn org.owasp:dependency-check-maven:check

52

mvn org.owasp:dependency-check-maven:check

53

Perform the OWASP dependency

check in a dedicated security

build in your CI environment.

The security architecture of a systems describes how the normal
architecture is secured at different levels.

54

Technical Infrastructure

Technical Architecture

Secure
Technical Infrastructure

Secure
Technical Architecture

Security Requirements

Security Targets
Externe Quellen:

OWASP Top 10, BSI, PSA, …

Application Architecture
Secure

Application Architecture

S
e

c
u

ri
ty

A

rc
h

it
e

c
tu

re

The security architecture consists of security components and
communication channels that may need to be secured.

55

Component A Component B

Channel AB

Trust boundary

Potentially secured
communication channel

Component

Interface (exported or imported)
via a gate keeper

o Each system consists of security components that are connected by channels

o Different abstractions: data centers, hardware units, VMs, app servers, databases, software components, …

o Each security component is owned by somebody. This somebody may be trust worthy or not.

o Each security component has a defined security - from very secure to insecure:

o How exhaustive and elaborate must the gate keeper be at the entries and exits? Fort Knox or access to everyone?

o Each channel has a defined security – from very secure to insecure:

o How robust is a channel and the used protocol against typical attacks?

Security components can form security communities, with hard
boarder controls and loose inner security.

56

Component A Component B

Component D

Component C

This will be a Java 9
module soon.

The internal design of secure components is influenced by security
concerns. But the business logic should stay clean.

57

o Validation

o Expected types and value ranges

o Validate if input satisfies the
expected patters

o Canonicalization

o Lossless reduction to the most
simple representation.

o Normalization

o Lossy reduction to the most
simple representation

o Sanitization

o Ensure data hygiene

o Prevent information disclosure
and leakage

58

Security is a cross cutting concern. Interceptors are a perfect
match to implement security functionality.

Interceptor + Binding annotations

Sanitize parameters and continue

Get annotation from method
or it’s declaring class

Activate in beans.xml

59

The interceptor binding annotation defines relevant types and their
sanitization functions.

The sanitization function

Non-binding sanitization
type value

Interceptor binding annotation can
be applied to methods and classes

60

Use CDI decorators for component specific security features.

Activate in beans.xml

Inject the delegate instance

Do any additional security
check that my be required

61

Apply Design by Contract (DbC) to your gate keeper and security
components using the method validation API.

The interface is the contract.

It defines the pre and post
conditions of methods using
javax.validation annotations.

62

There is no 100% security.

63

It`s up to us developers to

write secure applications!

64

Incorporate security into your

daily development process.

65

Pay your employees well! Cater

for a good work environment.

&
Mario-Leander Reimer
Chief Technologist, QAware GmbH
mario-leander.reimer@qaware.de

https://slideshare.net/MarioLeanderReimer/
https://speakerdeck.com/lreimer/
https://github.com/lreimer/secure-programming-101/
https://twitter.com/leanderreimer/

