

JavaFX Layout:
Everything You Wanted to Know

Kevin Rushforth
Chien Yang
Java Client Group, Oracle
October 27, 2015

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not
a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products remains at the sole
discretion of Oracle.

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

JavaFX Core Scene Graph Classes

Common Layout Properties in Node

Layout Classes with Demos

Custom Layout Pane with Demo

Q & A

1

2

3

4

5

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JavaFX Core Scene Graph Classes

6

Node
abstract

CSS stylable

Shape Shape3D
abstract abstract

Parent

Group

MediaViewImageView
abstract

WebViewRegion
resizable resizable

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JavaFX Core Scene Graph Classes

7

Node
abstract

CSS stylable

Shape Shape3D
abstract abstract

Parent

Group

MediaViewImageView
abstract

WebViewRegion
resizable resizable

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Node: Common Properties and Attributes

8

• layoutBounds, boundInLocal and boundsInParent

• resizable vs non-resizable

• visible

• managed

• CSS Stylable

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Node: Bounds Properties

9

effect clip transforms rotatescale translategeometry layoutX
layoutY

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Node: Bounds Properties

10

effect clip transforms rotatescale translategeometry layoutX
layoutY

layoutBounds

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Node: Bounds Properties

11

effect clip transforms rotatescale translategeometry layoutX
layoutY

layoutBounds

boundsInLocal

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Node: Bounds Properties

12

effect clip transforms rotatescale translategeometry layoutX
layoutY

layoutBounds

boundsInLocal

boundsInParent

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Node: Bounds Properties

13

Apply Apply Apply

Button Button with drop shadow Button with drop shadow and rotation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Bounds Properties

14

Apply

Button

layoutBounds = boundsInLocal
= boundsInParent

Button with drop shadow

layoutBounds
boundsInLocal = boundsInParent

Button with drop shadow and rotation

layoutBounds
boundsInLocal
boundsInParent

Apply Apply

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Bounds Properties

15

• Use Group to include effect/clip/transforms in layout

• Group layoutBounds = union of children’s visual bounds

Button applyBtn = new Button(“Apply”);

applyBtn(new DropShadow());

applyBtn.setRotate(-22);

layoutRegion.getChildren().add(new Group(applyBtn));

Apply

Group’s layoutBounds

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Scenic View

16

• Scenic View is a free JavaFX scenegraph analyzer

• It draws overlays of bounds in the application it is observing

• Download and find out more about Scenic View here:

• http://www.scenic-view.org

• Great tool for debugging scenegraph, 
especially layout

http://www.scenic-view.org

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Resizable vs Non-Resizable

17

• 2 types of nodes: resizable nodes and non-resizable nodes

• Resizable: resized by its parent during layout

• Applications do NOT set size directly

• Parent makes sizing decision based on own layout policy

• Non-resizable: NOT resized by parent during layout

• Applications set properties to establish size

• Doesn’t mean node size can’t change!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Resizable vs Non-Resizable

18

Resizable Non-Resizable

Region

Control
WebView

Group
Shape

Text
ImageView
MediaView

Shape3D
Pane

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Demo

19

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Resizable Nodes

20

• A resizable node has 3 attributes that define the range of its size:

• Preferred size

• Minimum size

• Maximum size

• Parents query preferred size during layout

• Applications may set range directly

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Maximum Size

21

• Desired max for layout

• All layout regions (except AnchorPane) honor max size

• Max == Double.MAX_VALUE => unbounded

• Indicates hunger for space if available

• Max == preferred => clamped

• Indicates desire to be preferred size

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Maximum Size

22

• Examples of default Max Size on common controls

clamped

unbounded

Button
Label

ChoiceBox
Hyperlink

ProgressBar
Slider

ListView
TreeView
TableView

TabPane
SplitPane

ScrollPane
TextArea

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Visible and Managed Properties

23

• Children layed out regardless of visibility

• Parent still leaves space for it

• Unmanaged children ignored for layout

• Child will still be visible, but not resized or relocated by parent

• Not included in min/pref/max size computations

• If child needs to disappear from layout, must set both managed and
visible to false

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

CSS Styleable

24

• Node is CSS styleable

• CSS is primarily used to style Region nodes

• https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Context Area

Backgrounds (fills and images)

Content Area

Borders (strokes and images)

Padding

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Priorities of Styles for a Node

25

The following priority rules are used to set the visual properties of a
node (listed is the order of highest to lowest priority):

• Inline style

• Parent style sheets

• Scene style sheets

• Values set in the code using JavaFX API

• User agent style sheets

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Region Extended Classes

26

Region
resizable

TextFlowTilePaneStackPaneVBoxHBox

ControlPane

AnchorPane FlowPane GridPaneBorderPane

abstract
skinnable

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Region Extended Classes

27

Region
resizable

TextFlowTilePaneStackPaneVBoxHBox

ControlPane

AnchorPane FlowPane GridPaneBorderPane

abstract
skinnable

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Region

28

• It is the base class for all layout panes and controls

• It is the highest-level class that is fully CSS-styleable

• List of children is not publicly writable

• Inherits protected getChildren() method from Parent

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Pane

29

• Pane is a subclass of the Region class

• Exposes the getChildren() method of the Parent class

• Can be used when absolute positioning is needed

• Positions its children at their (layoutX, layoutY)

• Resizes all resizable children to their preferred sizes

• Pane does not clip its content

• Its children may be displayed outside its bounds

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Demo

30

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

HBox

31

• Lays out children in a single horizontal row

• Pref width: large enough to display all children at their pref widths

• Pref height: largest of the pref heights of all its children

• Use properties and constraints to control locations and sizes of
children

• alignment, fillHeight, spacing, setHgrow(), setMargin()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

HBox

32

• Supports 2 types of constraints using static methods

• hgrow — specifies whether child expands horizontally when there
is additional space  
 
 

• margin - specifies space outside the edges of a child node

HBox.setHgrow(node, Priority.ALWAYS); // expands horizontally

HBox.setHgrow(node, Priority.NEVER); // don’t expand horizontally

// 6px top, 2px right, 6px bottom, and 2px left
Insets margin = new Insets(6, 2, 6, 2);
HBox.setMargin(okBtn, margin);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

VBox

33

• Lays out children in a single vertical column

• Pref height: large enough to display all children at their pref heights

• Pref width: largest of the pref widths of all its children

• Use properties and constraints to control the locations and sizes of
children

• alignment, fillWidth, spacing, setVgrow(), setMargin()

• VBox is similar to HBox except in opposite direction

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 34

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

FlowPane

35

• Lays out children in rows or columns wrapping at a specified width or
height

• Flow alignment, order and spacing are configurable

• alignment, columnHalignment, rowValignment

• hgap, vgap, prefWrapLength, nodeOrientation

• Renders all children at their preferred sizes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

FlowPane

36

 // Add photos to the flow pane
 for (int i = 1; i < 16; i++) {
 String imageStr = "resources/images/squares" + i + ".jpg";
 int index = i % sizeArr.length;

 flowPane.getChildren().add(new ImageView(new Image(imageStr,
 sizeArr[index], sizeArr[index], true, true)));
 }
 flowPane.getStyleClass().add(“layout");

 Label nodeOrientationLabel = new Label("Node Orientation");
 ChoiceBox<NodeOrientation> nodeOrientationCBox = new ChoiceBox<>();
 nodeOrientationCBox.getItems().addAll(NodeOrientation.INHERIT,
 NodeOrientation.LEFT_TO_RIGHT, NodeOrientation.RIGHT_TO_LEFT);
 nodeOrientationCBox.getSelectionModel().select(flowPane.getNodeOrientation());
 nodeOrientationCBox.getSelectionModel().selectedItemProperty().addListener(
 this::nodeOrientationChanged);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 37

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

BorderPane

38

• Divides layout area into five regions:

• top, right, bottom, left, and center

• Resizing policies for children:

• top and bottom - preferred height, width extended

• left and right - preferred width, height extended

• center - fill the rest of the available space

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

BorderPane

39

• Use top, right, bottom, left, and center properties to set children

• Do not add children via the getChildren() method

• Not all of the five positions need to have nodes

• Set to null to remove a child node from a position

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 40

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

StackPane

41

• Lays out children in a stack of nodes

• Preferred width is the width of its widest child

• Preferred height is the height of its tallest child

• Alignment is configurable

• Resizes children to fill (up to their max limit)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 42

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

TilePane

43

• Lays out children in a grid of uniformly sized cells known as tiles

• Works similarly to FlowPane except all rows have same height and
columns have same width

• Alignment of flows and within tiles are configurable

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

TilePane

44

• 3 types of alignment attributes

• alignment property affects the content of TilePane as a whole

• tileAlignment property affects the alignment of all children within
their tiles

• TilePane.setAlignment(Node, Pos) affects the alignment of the
child node within its tile

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 45

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

AnchorPane

46

• Lays out children by allowing their edges to be anchored to parent’s

• Anchor distance is measured from the edges of the content area of
the AnchorPane and the edges of the children

Button

topAnchor

leftAnchor

bottomAnchor

rightAnchor

Content area

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

AnchorPane

47

• AnchorPane may be used for two purposes:

• Aligning children along one or more edges of the layout 
 
 
 

• Stretching children when the layout is resized

• Opposing edges are anchored

 AnchorPane.setTopAnchor(topRight, 10.0);
 AnchorPane.setRightAnchor(topRight, 10.0);

 AnchorPane.setBottomAnchor(bottomLeft, 10.0);
 AnchorPane.setLeftAnchor(bottomLeft, 10.0);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 48

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

GridPane

49

• Lays out children within a flexible grid of rows and columns

• Best suited for creating forms or any layout that is organized in rows
and columns

• A child may be placed anywhere within the grid and may span
multiple rows/columns. Its placement within the grid is defined by it's
layout constraints:

• columnIndex, rowIndex, columnSpan, rowSpan

• Total number of rows/columns does not need to be specified up front
It will automatically expand/contract to accommodate its content.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

GridPane: convenience methods

50

• Use convenience methods that combine setting of constraints and
adding the children

• add, addRow, and addColumn

GridPane gridpane = new GridPane();

gridpane.add(new Button("(0, 0)"), 0, 0); // column=0 row=0

gridpane.add(new Button(), 2, 1); // column=2 row=1

gridpane.add(new Label(), 3, 2); // column=3 row=2

gridpane.addRow(3, new Text(“JavaOne 2015”)); // column=0, row=3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

GridPane: Sizing

51

• Supports 3 types of row/column sizing

• Sized to content: Rows and columns sized to fit their content

• Fixed: columnConstraints, rowConstraints

• Percentage: setPercentWidth, setPercentHeight

• GridPane.REMAINING means that the child node spans the
remaining columns or remaining rows

 GridPane.setColumnSpan(descText, GridPane.REMAINING);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

GridPane: Debugging Feature

52

• This feature is primarily for debug purposes

• gridPane.setGridLinesVisible(true); // Make grid lines visible

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 53

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Custom Layout

54

• Make sure no existing layout pane meets your requirements

• Create a subclass of Region or Pane and override layoutChildren() 
 

• May need to override computeMin/Pref/Max size methods

 @Override protected void layoutChildren() { …. }

 @Override protected double computeMinWidth(double height) { … }
 @Override protected double computePrefWidth(double height) { … }
 @Override protected double computeMaxWidth(double height) { … }

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Custom Layout

55

• Simple example of layout of children by sorted height
 @Override protected void layoutChildren() {
 List<Node> sortedManagedChidlren =
 new ArrayList<>(getManagedChildren());
 Collections.sort(sortedManagedChidlren, (c1, c2)
 -> new Double(c2.prefHeight(-1)).compareTo(
 new Double(c1.prefHeight(-1))));
 double currentX = pad;
 for (Node c : sortedManagedChidlren) {
 double width = c.prefWidth(-1);
 double height = c.prefHeight(-1);
 layoutInArea(c, currentX, maxHeight - height, width,
 height, 0, HPos.CENTER, VPos.CENTER);
 currentX = currentX + width + pad;
 }
 }

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 56

Demo

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Summary

57

• JavaFX has a complete set of layouts

• Easy to use customizable API

• Will meet the needs of most applications

• Create your own custom layout for specialized needs

• Override existing layout to add new capabilities

• Override Region or Pane for fully custom behavior

Q & A

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Session Surveys

Help us help you!!
• Oracle would like to invite you to take a moment to give us your

session feedback. Your feedback will help us to improve your
conference.
• Please be sure to add your feedback for your attended sessions by

using the Mobile Survey or in Schedule Builder.

59

