]avaOne

ORACLE




Distributed Streams

The Stream API on Steroids

Brian Oliver

Architect | Specification Lead b &3 - @ b
Coherence Engineering | Oracle Corporatio o

October 2015 P

Email: brian.oliver@oracle.com
Twitter: @pinocchiocode

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |




Safe Harbor Statement

The followingis intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporatedinto any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

e ORACLE



Program Agenda

E» Streams

E» Distributed Streams
) Demonstrations
) Optimizations

B Summary

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

e ORACLE



¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::) ]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |




Streams &

A defining new feature of the Java 8 Platform

* Provide Functional Programming constructs for processing information
— Typicallyrequires heavy use of lambdas

* Both a query and aggregation API for various ‘stream sources’
— Collections, files, sockets...

* Define a pipeline of zero or more intermediate operations and a single
terminal operation

* Replaces external with internal iteration

* Enables execution parallelization without code changes

é) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 6

e ORACLE



Streams
Query Example

Map<Long, Order> = HashMap<>()

Set<Long> customersForProduct = .values().stream()
.flatMap(order —> order.getItems().stream())
.filter(orderItem —> orderItem.getProductId() == productId)
.map(0OrderItem::getOrder)

.map(Order::getCustomerId)
.collect(toSet())

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 7

—— ORACLE




Streams
Aggregation Example

Map<Long, Double> salesByProduct = .values().stream()
. flatMap(order —> order.getItems().stream())

.collect(groupingBy(OrderItem::getProductId
summingDouble(OrderItem::getTotal)))

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 8

e ORACLE




Streams &

Intermediate Operations

* Stateless intermediate operations are:
— filter(Predicate<? super T> predicate)
— map(Function<? super T,? extends R> mapper)
— flatMap(Function<? super T,? extends Stream<? extends R>> mapper)
— peek(Consumer<? super T> action)

* Stateful intermediate operations are:
— distinct()
— 1limit(long maxSize)
— skip(long n)
— sorted([Comparator<? super T> comparator])

éiJavaOne“

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 9

e ORACLE



Streams
Terminal Operations

— forEach(Consumer<? super T> action)

— reduce(BinaryOperator<T> accumulator)

— toArray(IntFunction<A[]> generator)

— min(Comparator<? super T> comparator)

— max(Comparator<? super T> comparator)

— count()

— anyMatch(Predicate<? super T> predicate)
— allWMatch(Predicate<? super T> predicate)
— noneMatch(Predicate<? super T> predicate)
— findFirst()

— findAny()

— collect(Collector<? super T,A,R> collector)

(_ﬁ) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 10

e ORACLE



Streams
Collectors

* Some of the most powerful use cases require Collectors
* Allow custom “collection” of results in pipeline

* A Collector has four components:
— Supplier: creates a new result container
— Accumulator: incorporates single data element into a result container
— Combiner: merges two result containersinto one
— Finisher: performs final transformation of a result container

é) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

e ORACLE

11



Streams
Collectors

&

Some Collectors, such as groupingBy, can have nested Collectors:

Map<Long, Map<String, Double>> salesByCustomerByProduct =
.values().stream()
.flatMap(order —> order.getItems().stream())
.collect(groupingBy
item —> item.getOrder().getCustomerId()
groupingBy (OrderItem: :getName
summingDouble(OrderItem::getTotal))))

Powerful and flexible
No need for custom code

Much better than a bunch of nested loops?

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 2

e ORACLE




Streams
Collectors

averagingInt/Long/Double
summingInt/Long/Double
summarizingInt/Long/Double
groupingBy
partitioningBy

joining

mapping

minBy, maxBy

counting

reducing
toCollection/Set/List/Map

é) JavaOne

—
—_—

ORACLE"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

13



/hat is Oraclé

)
-
d

)

-

e A2
ﬁ) JavaOne

D —
S—

. Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 14
p— ORACLE



What is Oracle Coherence? &

* In-Memory-Data-Grid
— Clustered, Shared, Data-Structures, RAID-like availability, Dynamic-Live-Scale-Out
— Pure Java
— Typically used for Distributed Caching

— Fully parallel query/ aggregation / in-place processing
— Cluster-wide concurrently control

* Implements Standard Java Platform Data-Structures

— Eg: NamedCache == java.util.Map (on steroids)

é) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 15

e ORACLE



{2) JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |



Distributed Streams &

Limitations of the current Java Platform

* Query & Aggregation concepts already exist in Coherence...
 Standard Java Design and Implementation is limiting

* Parallel execution only within a single process

— We want to parallelize it across many processes on many machines

* Design assumes data locality

* Non-serializable Lambdas used as arguments
* Built-in Collectors and some of the return types are not serializable

* But... it’'s an awesome model for distributed computing!
—Could we make them work in a distributed manner?

= lava O ne Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 17

e ORACLE




But...

“Where are operations in a
pipeline executed? Which one’s
can or should be evaluated
remotely v’s locally

(in parallel or not)?”

g) JavaOner

ORACLE"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 18



Distributed Streams
Where can and should operations be executed? What about collectors?

g

Map<Long, Order> = HashMap<>()

Set<Long> customersForProduct = .values().stream()
.flatMap(order —> order.getItems().stream())
.filter(orderItem —> orderItem.getProductId() == productId)
.map(0OrderItem::getOrder)

.map(Order::getCustomerId)
.collect(toSet())

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | ig

—— ORACLE




Distributed Streams
Terminal Operations: Evaluate Locally or Remotely (or both?)

— forEach(Consumer<? super T> action)

— reduce(BinaryOperator<T> accumulator)

— toArray(IntFunction<A[]> generator)

— min(Comparator<? super T> comparator)

— max(Comparator<? super T> comparator)

— count()

— anyMatch(Predicate<? super T> predicate)
— allWMatch(Predicate<? super T> predicate)
— noneMatch(Predicate<? super T> predicate)
— findFirst()

— findAny()

— collect(Collector<? super T,A,R> collector)

cf,f) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 20

e ORACLE



Distributed Streams
On Coherence

&

Re-implemented Stream API
Support for serialization of pipeline operations, including partial and final results
Evaluate pipeline operationsin a distributed manner, in parallel

Implemented serializable versions of the standard JDK Collectors

customerlId = ...

List<Order> custOrders = .stream()

.map (Map.Entry::getValue)
.filter(order —> order.getCustomerId() == customerld)
.collect(RemoteCollectors.tolList())

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 21

e ORACLE




Distributed Streams
Query Example

What should we process? Keys? Values? Entries?
Eg: Don’t Call “stream” on result of values(), entrySet(), keySet()

NamedCache<Long, Order>

Set<Long> customersForProduct = .stream()
.map(Map.Entry: :getValue)
.flatMap(order —> order.getItems().stream())
.filter(orderItem —> orderItem.getProductId() == productId)
.map(OrderItem::getOrder)
.map(0Order::getCustomerId)
.collect (RemoteCollectors.toSet())

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 22

—— ORACLE




Distributed Streams
Aggregation Example

import static com.tangosol.util.stream.RemoteCollectors.*;
NamedCache<Long, Order> orders = ...;

Map<Long, Map<String, Double>> salesByCustomerByProduct =
orders.stream()

.map(Map.Entry: :getValue)

.flatMap(order —> order.getItems().stream())

.collect(groupingBy(
(item) -> item.getOrder().getCustomerId(),
groupingBy(OrderItem: :getName,

summingDouble(OrderItem::getTotal))));

éiJavaOne"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 23

—— ORACLE



¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::) ]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |




¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::) ]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |




Optimizations
Pre-filter to avoid placing entries in the pipeline (and creating garbage)

Don’t do this:

.stream()
.map(Map.Entry: :getValue)
.filter(order —> order.getCustomerId() == customerld)

Do this instead:

.stream(equal(Order: :getCustomerId, customerId))
.map(Map.Entry: :getValue)

éiJavaOne"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 26

—— ORACLE



g

Optimizations

Pre-map to allow using forward indexes (and avoid deserialization)

Don’t do this:

.stream()
.map(Map.Entry: :getValue)

.mapToDouble(Order::getTotal)
.sum();

Do this instead:

.stream(Order::getTotal)
~mapMapEntryiigetValue)
.mapToDouble (Orderi:getTotalNumber: :doubleValue)

.sum();

éiJavaOne"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 27

—— ORACLE



g

Optimizations
Combine them (use indexes for getCustomer and getTotal)

So the following:

double total =
orders.stream()
.map(Map.Entry::getValue)
.filter(order —> order.getCustomerId() == customerId)
.mapToDouble(Order::getTotal)
.sum();

Becomes:

double total =
orders.stream(equal(Order::getCustomerId, customerlId),
Order::getTotal)
.mapToDouble(Number: :doubleValue)
.sum();

= lavaone Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 28

—— ORACLE




¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::) ]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |




CREATE
Summary
Distributed Streaming Rocks!

* Stream API provides functional API for query and aggregation
* Collectors eliminate the need for custom code

* Coherence provides Distributed Stream API
— Allows parallel processing of data streams across a cluster “in-place”

— Scales multiplethreads in a single process to multiple threads in multiple processes
across machines across the Coherence cluster (with high-availablity)

— Provides optimizationsto avoid deserialization & use indexes
— Stable results even during cluster failure / recovery

* Next generation? Real-time continuous stream processing

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 30

e ORACLE



¢
- — o
-~ ‘«'(.‘ \"r
> /
p 4 /
.

‘::) ]W Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |




Start Playing!

Coherence for Developers!

* https://www.oracle.com/goto/coherence

* https://coherence.java.net

. https://twitter.com/OracleCoherence
m https://www.linkedin.com/grp/home?gid=1782166

Ihttps://blogs.oracIe.com/OracIeCoherence You Tubé http://www.youtube.com/OracleCoherence

) 'a\LEAQ_De Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 32



C
T

£ U

i T !
t Note: The speaker notes for thisslideinclude i
i detailed instructions on how to reuse this |
i Section Header slideinanother presentation. |
] H
i i

Tip! Remember to remove this text box.

cﬁ) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 33

e ORACLE




Safe Harbor Statement

The precedingis intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporatedinto any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

%{S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 34

e ORACLE



Integrated Cloud

Applications & Platform Services




]avaOne

ORACLE




