
Case Studies and Lessons Learned from
SSL/TLS Certificate Verification Vulnerabilities

JPCERT/CC Information Coordination Group
Yozo TODA (yozo.toda@jpcert.or.jp)

1

JavaOne2015 version

Copyright©2015 JPCERT/CC All rights reserved.

Activities of JPCERT/CC

2

Incident
responseNetwork

monitoring

Watch and
warning

Vulnerability
handling

Vulnerability
analysis

Secure coding

Developers
Oversea CSIRTs

Copyright©2015 JPCERT/CC All rights reserved.

The speaker introduction

http://www.tomo.gr.jp/root/e9706.html

Yozo Toda
JPCERT/CC Vulnerability analysis team

•vulnerability analysis/handling
•secure coding
•co-op. with secure coding initiative of SEI, CMU

3

Copyright©2015 JPCERT/CC All rights reserved.

Agenda

ü Introduction
üBasics: SSL/TLS and Certificate Verification
üVulnerabilities in the Real World
ü Lessons Learned from Vulnerabilities
üReferences

4

Copyright©2015 JPCERT/CC All rights reserved.5

INTRODUCTION

Copyright©2015 JPCERT/CC All rights reserved.

SSL/TLS

6

SSL/TLS technology becomes popular today, and
is essential for privacy protection and data
encryption.

• E-commerce and online banking sites support HTTPS
connection.

• Most browsers support HTTP/2 on TLS only

But…
number of vulnerabilities are found on
software supporting SSL/TLS.

Copyright©2015 JPCERT/CC All rights reserved.

From security vendors’ reports…

7

“40% of the audited apps did not validate the
authenticity of SSL certificates presented. This makes
them susceptible to Man in The Middle (MiTM)
attacks.”

IOActive Research Blog (Jan. 8, 2014)

“cryptography issues are highly prevalent across all
applications and may be used to allow an attacker
to retrieve poorly protected data or hijack
communication with an application.”

VERACODE, State of Software Security Volume6 (June 2015)

Copyright©2015 JPCERT/CC All rights reserved.

Vulnerability reports on JVN.JP

8

JVN#27388160: SumaHo for Android fails to verify SSL/TLS server certificates
JVN#48270605: Yahoo! Japan Box for Android issue where it fails to verify SSL server certificates
JVN#04560253: Yuko Yuko App for Android fails to verify SSL server certificates
JVN#17637243: Kindle App for Android fails to verify SSL server certificates
JVN#27702217: Ameba for Android contains an issue where it fails to verify SSL server certificates
JVN#72950786: Outlook.com for Android contains an issue where it fails to verify SSL server certificates
JVN#10603428: JR East Japan App for Android. contains an issue where it fails to verify SSL server certificates
JVN#16263849: Demaecan for Android. contains an issue where it fails to verify SSL server certificates
JVN#48810179: Denny's App for Android. contains an issue where it fails to verify SSL server certificates
JVN#97810280: KDrive Personal for Windows contains an issue where it fails to verify SSL server certificates
JVN#75084836: Yahoo! Japan Shopping for Android contains an issue where it fails to verify SSL server certificates
JVN#68156832: Yafuoku! Contains an issue where it fails to verify SSL server certificates
JVN#39218538: Pizza Hut Japan Official Order App for Android. contains an issue where it fails to verify SSL server
certificates
JVN#85812843: FileMaker Pro fails to verify SSL server certificates
JVN#39707339: Opera fails to verify SSL server certificates
JVN#82029095: sp mode mail issue in the verification of SSL certificates

“improper certificate verification” issues in jvn.jp
(2013,2014)

Many Reports on
various Android apps

Copyright©2015 JPCERT/CC All rights reserved.

Why Certificate Verification Failure Concerns?

9

client

server

Copyright©2015 JPCERT/CC All rights reserved.

Why Certificate Verification Failure Concerns?

10

client

The failure allows Man-in-the-middle attack

server

Information leakage
Message modification

Man-in-the-middle attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Copyright©2015 JPCERT/CC All rights reserved.11

LESSONS LEARNED FROM
VULNERABILITIES

VULNERABILITIES IN THE
REAL WORLD

SSL/TLS AND CERTIFICATE
VERIFICATION

REFERENCES

Copyright©2015 JPCERT/CC All rights reserved.

What is SSL/TLS?

12

Transport Layer Security (TLS) and its predecessor, Secure Sockets
Layer (SSL), are cryptographic protocols designed to provide
communications security over a computer network.

https://en.wikipedia.org/wiki/Transport_Layer_Security

They use X.509 certificates and hence asymmetric cryptography to
authenticate the counterparty with whom they are communicating, and
to negotiate a symmetric session key.

This session key is then used to encrypt data flowing between the
parties.

https://nl.wikipedia.org/wiki/Secure_Sockets_Layer

Copyright©2015 JPCERT/CC All rights reserved.

SSL/TLS versions

13

Transport Layer Security (TLS) and its predecessor, Secure Sockets
Layer (SSL), are cryptographic protocols designed to provide
communications security over a computer network.

https://en.wikipedia.org/wiki/Transport_Layer_Security

They use X.509 certificates and hence asymmetric cryptography to
authenticate the counterparty with whom they are communicating, and
to negotiate a symmetric session key.

This session key is then used to encrypt data flowing between the
parties.

https://nl.wikipedia.org/wiki/Secure_Sockets_Layer

SSL 3.0 - RFC6101
TLS 1.0 - RFC2246
TLS 1.1 - RFC4346
TLS 1.2 - RFC5246
……….

The protocol is still evolving;
incorporating new cipher suites and
countermeasures to known attack
vectors…

Copyright©2015 JPCERT/CC All rights reserved.

SSL/TLS Transaction

14

client
server

Client hello

Server Hello
Certificate
Server Hello Done

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherspec
Finished

applicationData

This diagram is inspired from
http://www.secureworks.com/cyber-threat-intelligence/threats/transitive-trust/

Copyright©2015 JPCERT/CC All rights reserved.

SSL/TLS Transaction

15

client
server

Client hello

Server Hello
Certificate
Server Hello Done

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherspec
Finished

applicationData

handshake phase
Negotiating keys and
parameters

This diagram is inspired from
http://www.secureworks.com/cyber-threat-intelligence/threats/transitive-trust/

Copyright©2015 JPCERT/CC All rights reserved.

SSL/TLS Transaction

16

client
server

Client hello

Server Hello
Certificate
Server Hello Done

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherspec
Finished

applicationData

Encrypted
communication

This diagram is inspired from
http://www.secureworks.com/cyber-threat-intelligence/threats/transitive-trust/

Copyright©2015 JPCERT/CC All rights reserved.

NetCat: sample client program with URLConnection class

17

public class NetCat {
public static void main(String[] argv) throws Exception {
URI uri = new URI(argv[0]);
URLConnection conn = uri.toURL().openConnection();

BufferedReader reader =
new BufferedReader (new InputStreamReader

(conn.getInputStream(), “UTF-8”));
String buffer = reader.readLine();
System.out.println();
while (null != buffer) {
System.out.println(buffer);
buffer = reader.readLine();

}
}

}

Copyright©2015 JPCERT/CC All rights reserved.

Sample session (1)

18

$ java NetCat http://www.jpcert.or.jp/

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 ……
………………

$ java NetCat https://www.jpcert.or.jp/

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 ……
………………

URLConnection supports both “http”
and “https” protocol schemes.

Copyright©2015 JPCERT/CC All rights reserved.

Sample session (2)

19

$ java NetCat https://www.php.net/
Exception in thread “main” javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException: unable to find
valid certification path to requested target

at sun.security.ssl.Alerts.getSSLException(Alerts.java:192)
at sun.security.ssl.SSLSocketImpl.fatal (SSLSocketImpl.java:1937)
…………

This server certificate is self-signed,
hence certificate path validation failed.

In case of HTTPS,
URLConnection verifies
the server certificate.

Copyright©2015 JPCERT/CC All rights reserved.20

client
server

Client hello

Server Hello
Certificate
Server Hello Done

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherspec
Finished

applicationData

Client verifies
server certificate

SSL/TLS Transaction This diagram is inspired from
http://www.secureworks.com/cyber-threat-intelligence/threats/transitive-trust/

Copyright©2015 JPCERT/CC All rights reserved.21

client
server

Client hello

Server Hello
Certificate
Server Hello Done

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherspec
Finished

applicationData

Client verifies
server certificate

In this talk, We concentrate
on this part.

SSL/TLS Transaction This diagram is inspired from
http://www.secureworks.com/cyber-threat-intelligence/threats/transitive-trust/

Copyright©2015 JPCERT/CC All rights reserved.22

Server Certificates

•A server certificate contains
the public key and
the domain name of the server

(when it is used in HTTPS)

•Some CA (Certificate Authority)
guarantees the correspondence
between the two

•ITU-T standard X.509
•RFC5280, RFC6818

•Web browsers have a set of trusted CA certificates

Copyright©2015 JPCERT/CC All rights reserved.23

https://www.ipa.go.jp/security/pki/033.html

Structure of X.509 v3 certificates

Copyright©2015 JPCERT/CC All rights reserved.24

https://www.ipa.go.jp/security/pki/033.html

Structure of X.509 v3 certificates

Public key information

Copyright©2015 JPCERT/CC All rights reserved.25

https://www.ipa.go.jp/security/pki/033.html

Structure of X.509 v3 certificates

Information on the CA
signing this certificate

Copyright©2015 JPCERT/CC All rights reserved.

Structure of X.509 v3 certificates

26

https://www.ipa.go.jp/security/pki/033.html

Server’s domain name is stored at
subjectAltName and subject

Copyright©2015 JPCERT/CC All rights reserved.

Example: www.jpcert.or.jp.

27

• Issuer:
•C=US
•O=Symantec Corporation
•OU=Symantec Trust Network
•CN=Symantec Class 3 EV SSL CA - G3

•Subject:
•serialNumber=0100-05-006504
•C=JP
•postalCode=101-0054
•ST=Tokyo
•L=Chiyoda-ku
•streetAddress=“Hirose Bldg. 11F, 3-17 Kanda-nishikicho”
•O=“Japan Computer Emergency Response Team Coordination Center”
•OU=“System Administration Group”
•CN=www.jpcert.or.jp

• X509v3 extensions:
•X509v3 Subject Alternative Name:

•DNS:www.jpcert.or.jp
•X509v3 Basic Constraints:

•CA:FALSE

CA Information

Server Information

Copyright©2015 JPCERT/CC All rights reserved.

Example: www.google.com.

28

• Issuer:
•C=US
•O=Google Inc
•CN=Google Internet Authority G2

•Subject:
•C=US
•ST=California
•L=Mountain View
•O=Google Inc
•CN=google.com

• X509v3 extensions:
•X509v3 Subject Alternative Name:

•DNS:google.com, DNS:*.2mdn.net, DNS:*.android.com,
•DNS:*.appengine.google.com, DNS:*.au.doubleclick.net,
•DNS:*.cc-dt.com, DNS:*.cloud.google.com, DNS:*.de.doubleclick.net,
•DNS:*.doubleclick.com, DNS:*.doubleclick.net,
•DNS:*.fls.doubleclick.net, DNS:*.fr.doubleclick.net,
•DNS:*.google-analytics.com, DNS:*.google.ac, DNS:*.google.ad,
•…….. (omitted) ……..

•X509v3 Basic Constraints:
•CA:FALSE

Copyright©2015 JPCERT/CC All rights reserved.29

“Certificate Verification” contains 3 processes

•Verifies that the received server certificate is
properly created

•⇒certificate verification (in a narrow sense)

•Verifies that there is a proper certificate path
•⇒certificate path validation

•Verifies that the server name contained in the
certificate matches the server name to contact

•⇒host name verification

Copyright©2015 JPCERT/CC All rights reserved.

Certificate Verification (in a narrow sense)

30

lIs this certificate valid?
• Correct ASN.1 data structure?
• Properly signed by some trusted CA?
• Not expired?
• Not revoked?

Copyright©2015 JPCERT/CC All rights reserved.

Certificate Path Validation

31

Certification path validation algorithm
https://en.wikipedia.org/wiki/Certification_path_validation_algorithm

lAre there any certificate path(chain) starting
from the certificate up to some trusted CA
certificate?

lIs this certificate path valid?

RFC5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile
6. Certification Path Validation
https://tools.ietf.org/html/rfc5280#section-6

Copyright©2015 JPCERT/CC All rights reserved.

Certificate Path Validation

32

https://security.stackexchange.com/questions/56389/ssl-certificate-
framework-101-how-does-the-browser-actually-verify-the-validity

Builds the chain between
the server certificate and
the trusted CA certificate

… and verifies that each
certificate is signed properly.

Root CA

Copyright©2015 JPCERT/CC All rights reserved.

Hostname Verification

33

RFC2818: HTTP Over TLS
3.1. Server Identity
https://tools.ietf.org/html/rfc2818#section-3.1
RFC5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile
7. Processing Rules for Internationalized Names
https://tools.ietf.org/html/rfc5280#section-7

lConfirm the two identities match: the server name
(domain name) to access and the server name stored in
the certificate

lsubjectAltName extension MUST be used if exists
lMatching algorithm is the same as the algorithm used in

certificate path validation

Copyright©2015 JPCERT/CC All rights reserved.34

LESSONS LEARNED FROM
VULNERABILITIES

VULNERABILITIES IN THE
REAL WORLD

SSL/TLS AND CERTIFICATE
VERIFICATION

REFERENCES

Copyright©2015 JPCERT/CC All rights reserved.

Real Vulnerabilities: Pattern1

35

No verification is done

Copyright©2015 JPCERT/CC All rights reserved.

Vulnerability reports on JVN.JP

36

JVN#27388160: SumaHo for Android fails to verify SSL/TLS server certificates
JVN#48270605: Yahoo! Japan Box for Android issue where it fails to verify SSL server certificates
JVN#04560253: Yuko Yuko App for Android fails to verify SSL server certificates
JVN#17637243: Kindle App for Android fails to verify SSL server certificates
JVN#27702217: Ameba for Android contains an issue where it fails to verify SSL server certificates
JVN#72950786: Outlook.com for Android contains an issue where it fails to verify SSL server certificates
JVN#10603428: JR East Japan App for Android. contains an issue where it fails to verify SSL server certificates
JVN#16263849: Demaecan for Android. contains an issue where it fails to verify SSL server certificates
JVN#48810179: Denny's App for Android. contains an issue where it fails to verify SSL server certificates
JVN#97810280: KDrive Personal for Windows contains an issue where it fails to verify SSL server certificates
JVN#75084836: Yahoo! Japan Shopping for Android contains an issue where it fails to verify SSL server certificates
JVN#68156832: Yafuoku! Contains an issue where it fails to verify SSL server certificates
JVN#39218538: Pizza Hut Japan Official Order App for Android. contains an issue where it fails to verify SSL server
certificates
JVN#85812843: FileMaker Pro fails to verify SSL server certificates
JVN#39707339: Opera fails to verify SSL server certificates
JVN#82029095: sp mode mail issue in the verification of SSL certificates

“improper certificate verification” issues in jvn.jp
(2013,2014)

Many Reports on
various Android apps

Copyright©2015 JPCERT/CC All rights reserved.

Vulnerable Code

37

public static HttpClient getNewHttpClient() {
DefaultHttpClient v6;
try {

KeyStore v5 = KeyStore.getInstance(KeyStore.getDefaultType());
v5.load(null, null);
MySSLSocketFactory mySSLSocket = new MySSLSocketFactory(v5);
if(ApplicationDefineRelease.sAllowAllSSL) {

((SSLSocketFactory)mySSLScoket).setHostnameVerifier
(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

}

BasicHttpParams v2 = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(((HttpParams)v2), 30000);
...

}
catch(Exception v1) {

v6 = new DefaultHttpClient();
}
return ((HttpClient)v6);

}

Copyright©2015 JPCERT/CC All rights reserved.

Vulnerable Code

38

public static HttpClient getNewHttpClient() {
DefaultHttpClient v6;
try {

KeyStore v5 = KeyStore.getInstance(KeyStore.getDefaultType());
v5.load(null, null);
MySSLSocketFactory mySSLSocket = new MySSLSocketFactory(v5);
if(ApplicationDefineRelease.sAllowAllSSL) {

((SSLSocketFactory)mySSLScoket).setHostnameVerifier
(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

}

BasicHttpParams v2 = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(((HttpParams)v2), 30000);
...

}
catch(Exception v1) {

v6 = new DefaultHttpClient();
}
return ((HttpClient)v6);

}

((SSLSocketFactory)mySSLScoket).setHostnameVerifier
(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

Hostname verification is
disabled!!

Copyright©2015 JPCERT/CC All rights reserved.

Vulnerable Code

39

public static HttpClient getNewHttpClient() {
DefaultHttpClient v6;
try {

KeyStore v5 = KeyStore.getInstance(KeyStore.getDefaultType());
v5.load(null, null);
MySSLSocketFactory mySSLSocket = new MySSLSocketFactory(v5);
if(ApplicationDefineRelease.sAllowAllSSL) {

((SSLSocketFactory)mySSLScoket).setHostnameVerifier
(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

}

BasicHttpParams v2 = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(((HttpParams)v2), 30000);
...

}
catch(Exception v1) {

v6 = new DefaultHttpClient();
}
return ((HttpClient)v6);

}

((SSLSocketFactory)mySSLScoket).setHostnameVerifier
(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

Hostname verification is
disabled!!

Copyright©2015 JPCERT/CC All rights reserved.

Other Vulnerable Code Patterns

40

HostnameVerifier hv = new HostnameVerifier() {
@Override
public boolean verify(String hostname, SSLSession session) {

// always return true, any hostnames are accepted
return true;

}
};

empty HostnameVerifier

Copyright©2015 JPCERT/CC All rights reserved.

Other Vulnerable Code Patterns

41

TrustManager tm = new X509TrustManager() {

@Override
public void checkClientTrusted(X509Certificate[] chain,

String authType) throws CertificateException {
// do nothing, any certificates are accepted

}

@Override
public void checkServerTrusted(X509Certificate[] chain,

String authType) throws CertificateException {
// do nothing, any certificates are accepted

}

@Override
public X509Certificate[] getAcceptedIssuers() {

return null;
}

};

empty TrustManager

Copyright©2015 JPCERT/CC All rights reserved.

SSL/TLS vulnerability as a research topic

ACM CCS2012
Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software

https://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

42

ACM CCS2013
Rethinking SSL Development in an Appified World

http://android-ssl.org/files/p49.pdf

Copyright©2015 JPCERT/CC All rights reserved.43

SSL/TLS vulnerability as a research topic

Many application mis-use SSL/TLS libraries!!
- disable certificate verification
- disable hostname verification
-……

the cause(s) of SSL/TLS related vulnerabilities
- Developer’s lack of understanding SSL/TLS
- Releasing with the temporary configuration for internal

testing
- Requirement from the customer

Copyright©2015 JPCERT/CC All rights reserved.

Real Vulnerabilities: Pattern2

44

Improper certificate path
validation

Copyright©2015 JPCERT/CC All rights reserved.45

https://bluebox.com/technical/android-fake-id-vulnerability/

Android Fake ID Vulnerability Lets Malware
Impersonate Trusted Applications, Puts All
Android Users Since January 2010 At Risk

Presented at BlackHat 2014 USA
ANDROID FAKEID VULNERABILITY WALKTHROUGH
https://www.blackhat.com/us-14/archives.html#android-fakeid-vulnerability-walkthrough

Improper Certificate Path Validation: Fake ID

This vulnerability is related to application-
signing in Android OS…

Copyright©2015 JPCERT/CC All rights reserved.46

“there is a conspicuous absence of cryptographic
verification of any issuer cert claims, instead defaulting
to simple subjectDN to issuerDN string matching.”

Improper Certificate Path Validation: Fake ID

lEvery Android application is digitally signed
lAndroid OS verifies the signature as a part of installation

process
lEquivalent to certificate verification in SSL/TLS

lVerification code comes from Apache Harmony

lThis code has a problem on certificate path validation

Copyright©2015 JPCERT/CC All rights reserved.47

From the presentation at BlackHat2014

Copyright©2015 JPCERT/CC All rights reserved.

JarUtils::findCert (vulnerable)

48

private static X509Certificate
findCert(Principal issuer, X509Certificate[] candidates) {

for (int i = 0; i < candidates.length; i++) {
if (issuer.equals(candidates[i].getSubjectDN())) {

return candidates[i];
}

}

Picks up a certificate just matching the subjectDN.
The signature is not validated.

JarUtils.java

Copyright©2015 JPCERT/CC All rights reserved.

Fixing Fake ID

49

The fixed code verifies the signature when
picking up a certificate.

Copyright©2015 JPCERT/CC All rights reserved.50

private static X509Certificate
findCert(Principal issuer, X509Certificate[] candidates,

X509Certificate subjectCert, boolean chainCheck) {
for (int i = 0; i < candidates.length; i++) {

if (issuer.equals(candidates[i].getSubjectDN())) {
if (chainCheck) {

try {
subjectCert.verify(

candidates[i].getPublicKey());
} catch (Exception e) {

continue;
}

}
return candidates[i];

}
}

JarUtils::findCert (fixed)

The
signature is
verified

JarUtils.java

Copyright©2015 JPCERT/CC All rights reserved.

Improper certificate path validation: Apple iOS

51

TWSL2011-007: iOS SSL Implementation Does Not
Validate Certificate Chain
http://blog.spiderlabs.com/2011/07/twsl2011-007-ios-ssl-implementation-
does-not-validate-certificate-chain.html
https://www3.trustwave.com/spiderlabs/advisories/TWSL2011-007.txt

“iOS's SSL certificate parsing contains a flaw where it fails
to check the basicConstraints parameter of certificates
in the chain.”

What is ‘basicConstraints’?

Copyright©2015 JPCERT/CC All rights reserved.

Example: www.jpcert.or.jp.

52

• Issuer:
•C=US
•O=Symantec Corporation
•OU=Symantec Trust Network
•CN=Symantec Class 3 EV SSL CA - G3

•Subject:
•serialNumber=0100-05-006504
•C=JP
•postalCode=101-0054
•ST=Tokyo
•L=Chiyoda-ku
•streetAddress=“Hirose Bldg. 11F, 3-17 Kanda-nishikicho”
•O=“Japan Computer Emergency Response Team Coordination Center”
•OU=“System Administration Group”
•CN=www.jpcert.or.jp

• X509v3 extensions:
•X509v3 Subject Alternative Name:

•DNS:www.jpcert.or.jp
•X509v3 Basic Constraints:

•CA:FALSE

Basic Constraints is
specified in RFC5280.

Copyright©2015 JPCERT/CC All rights reserved.

What does basicConstraints indicate?

53

[from RFC5280 section 4.2.1.9]

(basicConstraints) indicates whether the certified public
key may be used to verify certificate signatures.

If (basicConstraints is not present or the value is false),
then the certified public key MUST NOT be used to verify
certificate signatures.

CA certificates must have basicConstraints as
TRUE, any other (nonCA) certificates must
have basicConstraints as FALSE.

Copyright©2015 JPCERT/CC All rights reserved.

basicConstraints and Certificate Path Validation

54

basicConstraints
must be TRUE

basicConstraints
must be TRUE

The issuer vouches
that the certificate is
CA or not CA.

Copyright©2015 JPCERT/CC All rights reserved.

basicConstraints and Certificate Path Validation

55

basicConstraints
must be TRUE

basicConstraints
must be TRUE

The issuer vouches
that the certificate is
CA or not CA.

iOS failed to confirm that any root
CA and intermediate CA
certificates have basicConstraints
as TRUE.

Malicious user may use an end-
entity certificate to sign another
certificate, and use it to MITM
attack iOS users.

Copyright©2015 JPCERT/CC All rights reserved.

Real Vulnerabilities: Pattern3

56

Improper Host Name
Verification

Copyright©2015 JPCERT/CC All rights reserved.57

CVE-2014-3577 Apache HttpComponents client:
Hostname verification susceptible to MITM attack
http://seclists.org/fulldisclosure/2014/Aug/48

Similar issues are reported for Apache Commons HttpClient (CVE-2012-6153,CVE-2012-5783)

Apache HttpComponents and Apache Axis

“Apache HttpComponents … may be susceptible
to a 'Man in the Middle Attack' due to a flaw in
the default hostname verification during
SSL/TLS when a specially crafted server side
certificate is used.”

Copyright©2015 JPCERT/CC All rights reserved.

“a (crafted) DN with a O field such as
O="foo,CN=www.apache.org”

and ordered such that the O appears prior to the CN
field would incorrectly match on the
<www.apache.org> ..."

58

… a specially crafted server side certificate is used.”

Apache HttpComponents and Apache Axis

Copyright©2015 JPCERT/CC All rights reserved.59

[from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3596]
The getCN function in Apache Axis 1.4 and earlier does not properly verify that
the server hostname matches a domain name in the subject's Common Name
(CN) or subjectAltName field of the X.509 certificate, which allows man-in-the-
middle attackers to spoof SSL servers via a certificate with a subject that
specifies a common name in a field that is not the CN field.
NOTE: this issue exists because of an incomplete fix for CVE-2012-5784.

Axis 1.x Axis 1.x
CVE-2012-5784 patch

Axis 1.x
CVE-2014-3596 patch

Does not verify
hostnames at all! Verify hostnames,

but poor quality…
Better quality
verification…

Apache HttpComponents and Apache Axis

Copyright©2015 JPCERT/CC All rights reserved.

CVE-2012-5784 fix

60

private static void verifyHostName(final String host, X509Certificate cert)
throws SSLException {

String cn = getCN(cert);
String[] subjectAlts = getDNSSubjectAlts(cert);
verifyHostName(host, cn.toLowerCase(Locale.US), subjectAlts);

}

private static String getCN(X509Certificate cert) {
String subjectPrincipal = cert.getSubjectX500Principal().toString();
return getCN(subjectPrincipal);

}

private static String getCN(String subjectPrincipal) {
StringTokenizer st = new StringTokenizer(subjectPrincipal, ",");
while(st.hasMoreTokens()) {

String tok = st.nextToken().trim();
if (tok.length() > 3) {

if (tok.substring(0, 3).equalsIgnoreCase("CN=")) {
return tok.substring(3);

}
}

}
return null;

}

Recognizes the data as a comma-separated string
list and searches “CN=“.
Hence it detects “CN=“ inside some attribute string.

Copyright©2015 JPCERT/CC All rights reserved.

CVE-2014-3596 fix(1)

61

private static void verifyHostName(final String host, X509Certificate cert)
throws SSLException {

String[] cns = getCNs(cert);
String[] subjectAlts = getDNSSubjectAlts(cert);
verifyHostName(host, cns, subjectAlts);

}

private static String[] getCNs(X509Certificate cert) {
String subjectPrincipal = cert.getSubjectX500Principal().toString();
return getCNs(subjectPrincipal);

}

private static String[] getCNs(String subjectPrincipal) {
……..

}

Copyright©2015 JPCERT/CC All rights reserved.

CVE-2014-3596 fix(2)

62

private static void verifyHostName(final String host, X509Certificate cert) throws SSLException { …….. }

private static String[] getCNs(X509Certificate cert) { …….. }

private static String[] getCNs(String subjectPrincipal) {
if (subjectPrincipal == null) {

return null;
}
final List cns = new ArrayList();
try {

final LdapName subjectDN = new LdapName(subjectPrincipal);
final List rdns = subjectDN.getRdns();
for (int i = rdns.size() - 1; i >= 0; i--) {

final Rdn rds = (Rdn) rdns.get(i);
final Attributes attributes = rds.toAttributes();
final Attribute cn = attributes.get("cn");
if (cn != null) {

try {
final Object value = cn.get();
if (value != null) {

cns.add(value.toString());
}

}
catch (NamingException ignore) {}

}
}

}
catch (InvalidNameException ignore) { }
return cns.isEmpty() ? null : (String[]) cns.toArray(new String[cns.size()]);

}

This code uses LdapName class
to find CN attribute.

Copyright©2015 JPCERT/CC All rights reserved.63

Another Improper hostname verification: CVE-2013-4073 Ruby

Hostname check bypassing vulnerability in SSL client
(CVE-2013-4073)
https://www.ruby-lang.org/en/news/2013/06/27/hostname-check-bypassing-vulnerability-in-openssl-client-cve-2013-
4073/

“Ruby’s SSL client implements
hostname identity check but it does
not properly handle hostnames in the
certificate that contain null bytes.”

Copyright©2015 JPCERT/CC All rights reserved.64

LESSONS LEARNED FROM
VULNERABILITIES

VULNERABILITIES IN THE
REAL WORLD

SSL/TLS AND CERTIFICATE
VERIFICATION

REFERENCES

Copyright©2015 JPCERT/CC All rights reserved.65

Point1: Do Verify Certificates

Certificate Verification is THE mandatory procedure
for SSL/TLS communication
Be careful if disabling verification for debugging
̶Check the configuration for release builds
̶Your release build behaves properly?

For Java/Android applications
̶Donʼt ignore SSLException
̶Donʼt disable TrustManager
̶Donʼt disable HostnameVerifier

Copyright©2015 JPCERT/CC All rights reserved.66

Point2: Verify Certificate Path and Hostname Properly

Basic Principle: When using third-party
libraries, use them as is, customization
should be as smallest as possible
When you need to implement the
verification procedure by yourself
̶Understand the specification properly
̶Test verification behaviors carefully
̶Include test patterns reflecting the known

attack vectors

BE CAREFUL!
Certificate path validation and hostname verification are
complicated tasks.

Copyright©2015 JPCERT/CC All rights reserved.

Best Practice for Using Cryptography

https://developer.android.com/guide/practices/security.html#Crypto

“In general, try using the highest level of
pre-existing framework implementation that
can support your use case.
………

67

If you cannot avoid implementing your
own protocol, we strongly recommend that
you do not implement your own
cryptographic algorithms.”

Copyright©2015 JPCERT/CC All rights reserved.

Note: Debugging with Proxy Tools

68

Proxy tools are useful for testing verification behavior
•Responding with a self-signed certificate or a
dynamically generated certificate

•Certificates with improper hostnames
•Expired certificates
•Revoked certificates

•Famous / popular proxy tools are Burp proxy, dsniff, Fiddler,
mitmproxy, …

Copyright©2015 JPCERT/CC All rights reserved.69

LESSONS LEARNED FROM
VULNERABILITIES

VULNERABILITIES IN THE
REAL WORLD

SSL/TLS AND CERTIFICATE
VERIFICATION

REFERENCES

Copyright©2015 JPCERT/CC All rights reserved.

BOOKS

70

lBulletproof SSL and TLS
lhttps://www.feistyduck.com/books/bulletproof-ssl-
and-tls/

lマスタリングTCP/IP SSL/TLS編
lhttp://shop.ohmsha.co.jp/shop/shopdetail.html?bra
ndcode=000000001666&search=4-274-06542-1

And if you can read Japanese…

Copyright©2015 JPCERT/CC All rights reserved.71

WWW resources

Introduction to Public-Key Cryptography
— https://developer.mozilla.org/en-US/docs/Introduction_to_Public-

Key_Cryptography

Exciting Updates to Certificate Verification in Gecko
— https://blog.mozilla.org/security/2014/04/24/exciting-updates-to-certificate-

verification-in-gecko/

Japan smartphone Security Association (JSSEC), Android
Application Secure Design/Secure Coding Guidebook
— https://www.jssec.org/dl/android_securecoding_en_20140701.pdf

OnionKit by Android Library Project for Multi-Layer
Network Connections (Better TLS/SSL and Tor)
— https://github.com/guardianproject/OnionKit

Copyright©2015 JPCERT/CC All rights reserved.

SSL Vulnerabilities: Who listens when Android
applications talk?
— http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-

who-listens-when-android-applications-talk.html
Defeating SSL Certificate Validation for Android
Applications
— https://secure.mcafee.com/us/resources/white-papers/wp-

defeating-ssl-cert-validation.pdf
CERT/CC Vulnerability Note VU#582497: Multiple
Android applications fail to properly validate SSL
certificates
—https://www.kb.cert.org/vuls/id/582497

72

WWW resources

Copyright©2015 JPCERT/CC All rights reserved.

OWASP, Certificate and Public Key Pinning
— https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

OWASP, Pinning Cheat Sheet
—https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Java Pinning (Flowdalic / java-pinning)
—https://github.com/Flowdalic/java-pinning

Android Pinning by Moxie Marlinspike (moxie0 /
AndroidPinning)
— https://github.com/moxie0/AndroidPinning

73

WWW resources (Certificate and Public Key Pinning)

Copyright©2015 JPCERT/CC All rights reserved.74

JPCERT Coordination Center
(https://www.jpcert.or.jp/)

Secure Coding
(https://www.jpcert.or.jp/securecoding/)

Contact: secure-coding@jpcert.or.jp

