Lightweight Java in the Cloud

Shaun Smith
Oracle Application Container Cloud

shaun.smith@oracle.com
@shaunMsmith

Gerrit Grunwald

Java Technology Evangelist
gerrit.grunwald@oracle.com
@hansolo

{,{) JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE"

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 2

) ORACLE

Java ¥ Cloud

* Java SE is ideal for building lightweight applications and (micro)services

* Cloud platforms offer
— High availability
— Affordability
— Ease of management
— Access to supporting services like object storage, messaging, and databases

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

) ORACLE

What do we mean by Cloud?

* A wonderfully amorphous word!

* Clouds offer a range of services including laas / SaaS / PaaS

* Application Platform as a Service—APaa$S
— Focused on running lightweight applications—not heavy weight services like database
— Typically employ containers to run applications
— Many vendors to choose from
— Most, if not all, APaaS platforms support Java

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 4

) ORACLE

Cloud Application Architecture

g) JavaOner

—TNa Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Configuration

éi, JavaOner

SRR Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

éi, JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

ORACLE"

Configuration

* Application should be “parameterizable” —externalize all config data

* Configuration should be defined as environment variables and read by
applications on start

* Makes it easy to deploy the application to any environment where
configurations will differ

* Deployment configuration can be managed by Ops post Dev

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

) ORACLE

This includes database and other backing
service locations, third-party credentials like
AWS or Twitter...such configuration should

not be stored in the codebase...exposes
rivate resources in the version control

hiheroku

éi) JavaOne

= SORETE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

10

Environment variables...useful when the
values are likely to be different from one
host system to the next...makes the

application code more portable and
flexible...critical for writing applications

that are easily deploved and scaled

OPENSHIFT

by Red Hat"

E) la\LEAe_De Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Grizzly / Jersey

VES:
* Starts Grizzly HTTP server exposing JAX-RS resources defined in this application.
x @return Grizzly HTTP server.
*/
public HttpServer startServer() throws UnknownHostException {
// Base URI the Grizzly HTTP server will listen on
Optional<String> port = Optional.ofNullable(System.getenv("PORT"));
Optional<String> hostname = Optional.ofNullable(System.getenv("HOSTNAME"));
String baseUri = "http://" + hostname.orElse("localhost")
+ ":" + port.orElse("8080") + "/";

final ResourceConfig rc = new ResourceConfig().packages("com.example");
return GrizzlyHttpServerFactory.createHttpServer(URI.create(baseUri), rc);

éiJavaOne“

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

) ORACLE

Embedded public class Main {

Tomecat public static final Optional<String> PORT
= Optional.ofNullable(System.getenv("PORT"));
public static final Optional<String> HOSTNAME
= Optional.ofNullable(System.getenv(""HOSTNAME"));

public static void main(String[] args) throws Exception {
String contextPath = "/" ;
String appBase = ".";
Tomcat tomcat = new Tomcat();
tomcat.setPort(Integer.valueOf (PORT.orElse("8080")));
tomcat.setHostname (HOSTNAME.orElse(" localhost"));
tomcat.getHost().setAppBase(appBase);
tomcat.addWebapp(contextPath, appBase);
tomcat.start();

tomcat.getServer().await();

éiJavaOne“

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

— ORACLE

Dependencies

g) JavaOner

Configuration

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

14

Dependencies

* Application dependencies must be explicitly declared

* Relying on the availability of system wide libraries in the runtime
environment can lead problems that are to hard to diagnhose

* Applications with explicit dependencies are easy to move between
environments

* Maven & Gradle provide a nice way to declare application dependencies

— lm Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

) ORACLE

15

Dependencies

g) JavaOner

Service Interface

Configuration

Copyright © 2015, Oracle and/or its affiliates. All rights rese

rved.

16

Service Interface

* Cloud applications typically expose Web/REST/Websocket services using
embedded servers like Tomcat, Jetty, or Grizzly/Jersey/Tyrus.

* Embedded servers must bind to the hostname and port defined by the
runtime environment, typically in an environment variable like SPORT

* Applications running in containers will likely bind to a local port that is
receiving load balanced traffic forwarded from a pubic port

* By exposing functionality over REST, applications can be provide services to
other applications (the core of the microservices approach)

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 17

) ORACLE

Application Interface

Dependencies | Services

Configuration

g) JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 18

Service Dependencies

* Service coordinates published in the runtime environment for consumption
by application

* Backing services should be pluggable
* Easy to change services—restart application to pick up changes

* Treat 37 party or platform services the same as your own services

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 19

) ORACLE

DEMO

%_(S) JavaOne

) ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

20

Cloud Application Qualities

%_(S) JavaOne

) ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

21

Stateless / Disposable

* Applications should be stateless with all persistent data stored in external
services like database or key/value stores

* Stateless applications makes scaling easy (esp. when scaling in by disposing
of instances)

* Configuration changes will result in the restarting (disposing & creating) of
application instances

* Ephemeral disk is useful but there is no guarantee a subsequent request
will be handled by the same instance

%_(S) JavaOne

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 22

) ORACLE

Share Nothing

* |deally, applications should be stateless and share-nothing

* Horizontal scaling of stateless applications by adding instances to handle
increased load is simple and reliable

* Not everyone agrees on this point...

%_(S) JavaOne

— SORETE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

23

Why We Aren’t Joining the Cloud Foundry Foundation

...we are also working hard to support both stateless and stateful
applications inside those containers...

OPENSHIFT

by Red Hat"

g) JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 24

Concurrency in Oracle Java SE Cloud Service

Resources

Database Cloud Service

Instances @@ Memory (GB) @

3 Wg

€

Storage Cloud Service

Y >

Java Cloud Service

VE

ORACLE

-

i,
Messaging Cloud Service

<Java0ne

SRR Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 25

Practical Matters

%_(S) JavaOne

) ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

26

Development vs. Deployment

* APaaS platforms are deployment platforms—you run apps on them

* Development happens where?
* How to develop and debug applications targeting APaaS?

— lm Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

) ORACLE

27

Java APaaS Debug Options

Debug locally in Debug in Cloud

emulated environment | p.qirict to single instance

* Define environment - Remote test & debug
variables to match target

* E.g., Spring Tools
Use same JDK release and (experimental afaik)

version as in target

* Challenge—opening up

> Challenge—"emulated” breakpoint callbacks from
not identical cloud to desktop

%_(S) JavaOne

) ORACLE

Debug locally using
same Docker image as
on APaa$

* Same runtime
environment as Cloud

* Challenge—dependency
on cloud services

* E.g. Heroku (not exactly
the same since not
Docker in cloud)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Summary

* Java is one of the best choices for Cloud application development
* Java has broad support from APaaS vendors

* Most of the architectural principals of Cloud apps are simply good practice
— Configurable
— Declared Dependencies Application Interface

— Pluggable Service

Dependencies | Services

Configuration

g) JavaOner

SRl Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

29

Java is the Platform!

* Focus on your Java application and not on proprietary platform features
* Architect for platform independence

* Own the stack—don’t let vendors dictate

* Use embedded servers, not containers to stay light E N

* Consider the microservices approach of many small
services assembled to provide a complete solution

(_é{) JavaOner

ORACLE' Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

30

Integrated Cloud

Applications & Platform Services

