
Compact Strings:
A Memory-Efficient Internal

Representation for Strings

Charlie Hunt

Sandhya Viswanathan

Software and Services Group

Speakers

 Charlie Hunt, Oracle

charlie.hunt@oracle.com

 Sandhya Viswanathan, Intel

sandhya.viswanathan@intel.com

 You

We encourage questions and discussions

2

mailto:charlie.hunt@oracle.com
mailto:sandhya.viswanathan@intel.com

Software and Services Group 3

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD
YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS
COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR
WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

• Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of
any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

• The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

• Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

• Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725,
or go to: http://www.intel.com/design/literature.htm

• Intel, the Intel logo, Intel Xeon, and Xeon logos are trademarks of Intel Corporation in the U.S. and/or other countries.

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families: Go to: Learn About Intel® Processor Numbers http://www.intel.com/products/processor_number

*Other names and brands may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.

Legal Disclaimers

http://www.intel.com/products/processor_number

Software and Services Group 4

Legal Disclaimers - Continued
• Some results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or

software design or configuration may affect actual performance.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

• Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its
customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks
are accurate and reflect performance of systems available for purchase.

• Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the
baseline platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that
correlates with the performance improvements reported.

• SPEC, SPECint, SPECfp, SPECrate, SPECpower, SPECjbb, SPECompG, SPEC MPI, and SPECjEnterprise* are trademarks of the Standard Performance Evaluation
Corporation. See http://www.spec.org for more information.

• TPC Benchmark, TPC-C, TPC-H, and TPC-E are trademarks of the Transaction Processing Council. See http://www.tpc.org for more information.

• Intel® Advanced Vector Extensions (Intel® AVX)* are designed to achieve higher throughput to certain integer and floating point operations. Due to varying
processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel®
Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system
configuration and you should consult your system manufacturer for more information.

• Intel® Advanced Vector Extensions refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512. For more information on Intel® Turbo Boost Technology 2.0, visit
http://www.intel.com/go/turbo

http://www.intel.com/go/turbo

Software and Services Group 5

The following is intended to outline our general product
direction. It is intended for information purposes only,
and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making
purchasing decisions. The development, release, and
timing of any features or functionality described for
Oracle’s products remains at the sole discretion of Oracle.

Safe Harbor Statement (Oracle)

Software and Services Group

Agenda

• Introduction

• Motivation

• Design

• Performance

6

Software and Services Group

JEP 254: Compact Strings

 More space-efficient internal representation for Strings

 Author: Brent Christian
 Owner: Xueming Shen
 Reviewed by: Aleksey Shipilev, Brian Goetz, Charlie Hunt
 Endorsed by: Brian Goetz
 Release: 9
 Issue: 8054307

http://openjdk.java.net/jeps/254
https://bugs.openjdk.java.net/browse/JDK-8054307

7

http://openjdk.java.net/jeps/254
http://openjdk.java.net/jeps/254
http://openjdk.java.net/jeps/254
http://openjdk.java.net/jeps/254
https://bugs.openjdk.java.net/browse/JDK-8054307
https://bugs.openjdk.java.net/browse/JDK-8054307
https://bugs.openjdk.java.net/browse/JDK-8054307
https://bugs.openjdk.java.net/browse/JDK-8054307
https://bugs.openjdk.java.net/browse/JDK-8054307

Software and Services Group

Terminology

Project name: String Density

Feature name: Compact Strings

8

Software and Services Group

String Density Team
 Oracle

 Charlie Hunt
 Aleksey Shipilev
 Sherman Shen
 Brent Christian
 Roger Riggs
 Tobias Hartmann
 Vladimir Kozlov
 Guy Delemarter

 Intel
 Sandhya Viswanathan
 Vivek Deshpande

9

Software and Services Group

Project Goals
Requirements:

 Java supports Unicode (UTF-16) characters which uses 2 byte
characters

 Improve the space efficiency of the String and related classes

 Preserve full compatibility for all related Java and native interfaces

 Maintain throughput performance in almost all scenarios

 Replacement for JDK 6’s Compressed Strings

 Platforms: X86/X64, SPARC*, ARM* 32/64

 OS: Linux*, Solaris*, Windows* and Mac OS X*

10

*Other names and brands may be claimed as the property of others.

 Motivation

Software and Services Group

Experimental Setup
 Collection of 950+ heap dumps from

 Oracle Fusion Middleware

 Oracle Fusion Applications

 Other Oracle Java Applications

 Java Object Layout Tools

 Linux X86_64 running on i7-4790K (1 socket, 4 cores, with HT)

 The following JVM modes emulated:
 32 bit data model

 64 bit data model, compressed reference disabled

 64 bit data model, compressed reference enabled

 64 bit data model, compressed reference enabled, 16 byte object alignment

12

Software and Services Group

Total Memory Footprint

 950+ Heap Dumps processed
with Java Object Layout Tool

 Live Data Set size distribution
shown

 Similar distribution in all models

 X64 dumps without compressed
reference have larger footprints
(2nd graph)

13

Software and Services Group

char[] Footprint

 char[] footprint as a % of LDS

 Consumes 10% to 45% of LDS

 X64 mode without compressed
reference has lower % due to
larger object header size

 Mostly 1 byte char[]

14

Software and Services Group

String Size Distribution (i)

15

 Strings of a particular
size (String instance
count)

 Majority of Strings are
small

 > 75% of strings are of
size smaller than 35
characters

Software and Services Group

String Size Distribution (ii)

 Total character count
for strings of particular
size

 Skew the footprint
towards the tail

 75% of all the chars
are residing in strings
of size < 250

16

Software and Services Group

char[] Compression

 Projected char[] footprint
improvements

 35% to 40% reduction

 Less than 50% theoretical max
due to dominance of small
strings

17

Software and Services Group

Total Footprint Saving

 5% - 15% reduction in total
footprint due to:

 Compressed underlying storage
for characters in the string

 Increased String object size

18

 Design

Software and Services Group

New String Class Design

 Preserves full compatibility for all related Java and native interfaces

 Changes the internal representation of String class

 Characters of String encoded as either UTF-16 or ISO-8859-1/Latin-1
 Stripped off the leading zero byte of a two byte UTF-16 character

 Uses byte array instead of char array to store characters
 1 byte per char for ISO-8859-1/Latin-1

 2 bytes per char for UTF-16

 An encoding byte field to indicate which encoding is used
 Ability to extend to support additional character encoding(s)

 Reduces memory footprint

 Maintains throughput performance

20

Software and Services Group

String Encoding

 String with any leading byte in incoming chars as non 0
 Cannot be compressed in our scheme
 Stored as 2 byte chars using UTF-16 encoding

 Strings with leading byte in all the incoming chars as 0
 Candidates for compression
 Leading 0 bytes are stripped off and only the trailing byte is stored
 This maps to the Latin-1 encoding

 Why not UTF-8?
 UTF-8 supports variable width characters
 Many String API implementations use random access into sequence of

chars
 Good encoding for transmission but not for performant String operations

21

Software and Services Group

String Class Old versus New

 New String Class (JDK 9)

 {

 private final byte[] value;

 private final byte coder;

 private int hash;

 ...

}

 Old String Class (JDK 8)

{

 private final char value[];

 private int hash;

 ...

}

22

Software and Services Group

JDK 6 Compressed Strings

 JDK 6 Compressed String Class
 {
 private final object value;
 private final int offset;
 private final int count;
 private int hash;
 ...
}

Where value would point to char[]
or byte[] based on String contents

 JDK 6 String Class

{

 private final char value[];

 private final int offset;

 private final int count;

 private int hash;

 ...

}

23

Software and Services Group

JDK 6 vs JEP 254

24

 JDK 6 Compressed Strings
 Two underlying implementations of String Class

 Two sets of libraries: difficult to maintain

 instanceof check, overhead for chars as byte[] or char[]

 Limited support in the JRE

 Resulted in frequent string inflation to UTF-16

 JEP 254
 One underlying implementation of String Class using byte[]

 Add an encoding (byte) field

 Expanded support for compressed strings in JRE

Software and Services Group

String Class Layout

25

Software and Services Group

String Class Layout Contd

26

 In 32 bit VM addition of encoding field inflates String object size
 No increase in String object size for 64 bit VM

 Performance

Software and Services Group

JMH Micro-Benchmarks
 JMH based extensive throughput Micro-Benchmarks for

 String, StringBuilder, StringBuffer APIs
 String encoding and decoding operations

 Performance:
 http://cr.openjdk.java.net/~thartmann/compact_strings/microbenchmark/
 String methods are highly optimized using SIMD instructions where possible
 With CompactString ability to do twice the operation per iteration, e.g.:

28

BASE SD
Benchmark ns/op ns/op BASE/SD

compareto.CompareToBench.cmp1_cmp1 201.05 124.61 1.61

concat.ConcatCharBench.test_char1_cmp1 1072.21 581.13 1.85

encoding.From.ascii (ISO-8859-1) 2649.99 585.63 4.53

encoding.To.ascii (ISO-8859-1) 897.48 584.10 1.54

equals.EqualsBench.cmp1_cmp1 195.77 95.20 2.06

indexof.IndexOfChar.base1_img1__img1 906.86 752.44 1.21

indexof.IndexOfString.base1_img1__img1 1164.63 588.95 1.98

BASE: Base repo without Compact Strings SD: With Compact Strings
Platform: Intel® Xeon ™ CPU E5-2697v3 @ 2.60GHz, 64 GB RAM with Linux 64-bit.

http://cr.openjdk.java.net/~thartmann/compact_strings/microbenchmark/
http://cr.openjdk.java.net/~thartmann/compact_strings/microbenchmark/
http://cr.openjdk.java.net/~thartmann/compact_strings/microbenchmark/

Software and Services Group

SPECjbb2005*

BASE SD SD/BASE

Peak Throughput 1.05

Avg secs between GC (s) 3.898 4.937 1.27

Avg GC length (s) 0.018 0.019 1.06

Time Spent in GC (%) 0.459 0.384 0.84

Avg Resident Memory (K) 96139 75528 0.79

With CompactStrings

 Avg Resident Memory
reduced by 21%

 Throughput increased
by 5%

29

*SPECjbb2005 is trademark of the Standard Performance Evaluation Corporation.

 See http://www.spec.org for more information.

Comparing optimized JEP-254 String Density branch versus un-optimized JDK 9 Sandbox running on Intel® Core™ i7-4770 CPU @ 3.40GHz, 32 GB RAM with Linux 64-bit.
JAVAOPTIONS="-server -showversion -Xmx12g -Xms12g -Xmn10g -XX:-UseAdaptiveSizePolicy -XX:MaxTenuringThreshold=15 -XX:InitialTenuringThreshold=15 -
XX:+UseParallelOldGC -XX:ParallelGCThreads=4 -XX:+UseLargePages -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintFlagsFinal"

Software and Services Group

SPECjbb2005 Heap Dump
 Total # instances similar

between the baseline &
String Density.

 Total # bytes allocated is

21% less with String Density

30

 #instances #bytes

class BASE SD BASE SD

[C 1027729 1427 74592544 398096

java.lang.String 1069949 1069607 25678776 25670568

[Ljava.lang.String; 80486 80486 4510512 4510512

[B 1037 1027175 509536 49374184
...

Total 2677131 2676155 124671480 99312552

*BASE: Base repo without Compact Strings *SD: With Compact Strings

Software and Services Group

SPECjbb2015*
BASE SD SD/BASE

max-jOPS 1.03

critical-jOPS 1.11

Avg secs between GC (s) 16.20 16.61 1.03

Avg GC length (s) 0.29 0.27 0.96

Time Spent in GC (%) 1.74 1.63 0.93

Avg Resident Memory (K) 1959521 1823907 0.93

With CompactStrings

 Avg Resident Memory
reduced by 7%

 MultiJVM critical-jOPS
increased by 11%

31

*SPECjbb2015 is trademark of the Standard Performance Evaluation Corporation.

 See http://www.spec.org for more information.

Comparing optimized JEP-254 String Density branch versus un-optimized JDK 9 Sandbox running on Intel® Core™ i7-4770 CPU @ 3.40GHz, 32 GB RAM with Linux 64-bit.

JAVAOPTIONS="-server -XX:+AlwaysPreTouch -XX:+UseParallelOldGC -XX:-UseAdaptiveSizePolicy -XX:MaxTenuringThreshold=15 -XX:-UseBiasedLocking -XX:+AggressiveOpts -
XX:LargePageSizeInBytes=2m -XX:SurvivorRatio=28 -XX:TargetSurvivorRatio=95 -Xms19g -Xmx19g -Xmn17g -XX:+UseLargePages -XX:ParallelGCThreads=4 -XX:+PrintGCDetails
-XX:+PrintGCTimeStamps -XX:+PrintTenuringDistribution"

Software and Services Group

Call for Action
 Intrigued or Interested?

 Try CompactStrings feature on your workload and give us feedback

 Implementation:

 Repository: http://hg.openjdk.java.net/jdk9/sandbox/
 Branch: JDK-8054307-branch

 Steps:

 $ hg clone http://hg.openjdk.java.net/jdk9/sandbox/
 $ cd sandbox
 $ sh ./get_source.sh
 $ sh ./common/bin/hgforest.sh up -r JDK-8054307-branch
 $ make configure
 $ make images

 The option to enable/disable CompactStrings: -XX:+CompactStrings/-XX:-CompactStrings

32

http://hg.openjdk.java.net/jdk9/sandbox/
http://hg.openjdk.java.net/jdk9/sandbox/
http://hg.openjdk.java.net/jdk9/sandbox/

