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⋮
2.869: Application time: 1.0001540 seconds
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⋮

DoubleSummaryStatistics 
{count=3, sum=2.181635, min=0.080123, average=0.727212, 
max=1.101357}



Application time: (\\d+\\.\\d+)

Example: Processing GC Logfile

⋮
2.869: Application time: 1.0001540 seconds
5.342: Application time: 0.0801231 seconds
8.382: Application time: 1.1013574 seconds
⋮

Regex:



Application time: (\\d+\\.\\d+)
Pattern stoppedTimePattern = 
            Pattern.compile("                                "); 

⋮ 
Matcher matcher = stoppedTimePattern.matcher(logRecord); 
String value = matcher.group(1);

Example: Processing GC Logfile



Processing GC Logfile: Old School Code

Pattern stoppedTimePattern = 
        Pattern.compile("Application time: (\\d+\\.\\d+)"); 

String logRecord;  
double value = 0;  
while ( ( logRecord = logFileReader.readLine()) != null) {  

Matcher matcher = stoppedTimePattern.matcher(logRecord);  
if ( matcher.find()) {  

value += (Double.parseDouble( matcher.group(1)));  
} 

}



Predicate<Matcher> matches = new Predicate<Matcher>() { 
    @Override 
    public boolean test(Matcher matcher) { 
        return matcher.find(); 
    } 
};
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Predicate<Matcher> matches = new Predicate<Matcher>() { 
    @Override 
    public boolean test(Matcher matcher) { 
        return matcher.find(); 
    } 
};

Predicate<Matcher> matches = 

                                                         

What is a Lambda?

matcherPredicate<Matcher> matches =

A lambda is a function  
from arguments to result

matcher.find()->

matcher
matcher.find()
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logFileReader.lines() 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.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 



Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

data source



Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

start streaming



Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  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.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

map to Matcher



Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

filter out
uninteresting bits



Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 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Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  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.mapToDouble(s -> Double.parseDouble(s))  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Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics();  aggregate results



What is a Stream?

• A sequence of values
• source and intermediate operations set the stream up lazily:
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logFileReader.lines()  

.map(stoppedTimePattern::matcher)  

.filter(Matcher::find)  

.map(matcher -> matcher.group(1))

.mapToDouble(Double::parseDouble);

Source



What is a Stream?

• A sequence of values
• source and intermediate operations set the stream up lazily:

Stream<String> groupStream =  
logFileReader.lines()  

.map(stoppedTimePattern::matcher)  

.filter(Matcher::find)  

.map(matcher -> matcher.group(1))

.mapToDouble(Double::parseDouble);

Intermediate
Operations



What is a Stream?

• The terminal operation pulls the values down the stream:

SummaryStatistics statistics =  
logFileReader.lines()  

.map(stoppedTimePattern::matcher)  

.filter(Matcher::find)  

.map(matcher -> matcher.group(1))

.mapToDouble(Double::parseDouble)

.summaryStatistics();Terminal
Operation
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Old School:  80200ms
Sequential:    25800ms

(>9m lines, MacBook Pro, Haswell i7, 4 cores, hyperthreaded)

Stream code is faster because operations are fused

How Does That Perform?



Can We Do Better?

Parallel streams make use of multiple cores
• split the data into segments
• each segment processed by its own thread

- on its own core – if possible
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Stream Code
DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines().parallel() 

.map(stoppedTimePattern::matcher) 

.filter(Matcher::find) 

.map(matcher -> matcher.group(1))  

.mapToDouble(Double::parseDouble) 

.summaryStatistics();



Results of Going Parallel:

• No benefit from using parallel streams while streaming data 
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Streaming I/O Bottleneck
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Streaming I/O Bottleneck
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5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coveragenew spliterator coverage

MappedByteBuffer mid

Included in JDK9 as FileChannelLinesSpliterator



StreamingIO:  56s
Spliterator:    88s

(>9m lines, MacBook Pro, Haswell i7, 4 cores, hyperthreaded)

Stream code is faster because operations are fused

LineSpliterator – results
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Tragedy of the Commons



Tragedy of the Commons

You have a finite amount of hardware
– it might be in your best interest to grab it all
– but if everyone behaves the same way…
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Justifying the Overhead

CPNQ performance model:

C - number of submitters
P - number of CPUs
N - number of elements
Q - cost of the operation



Justifying the Overhead

Need to amortize setup costs
– N*Q needs to be large
– Q can often only be estimated
– N often should be  >10,000 elements

If P is the number of processors, the formula assumes that 
intermediate tasks are CPU bound



Don’t Have Too Many Threads!

• Too many threads cause frequent handoffs
• It costs ~80,000 cycles to handoff data between threads
• You can do a lot of processing in 80,000 cycles!
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Fork/Join
• Parallel streams implemented by Fork/Join framework

• added in Java 7, but difficult to code
• parallel streams are more usable

• Each segment of data is submitted as a ForkJoinTask 
• ForkJoinTask.invoke() spawns a new task
• ForkJoinTask.join() retrieves the result

• How Fork/Join works and performs is important to your 
latency picture



Common Fork/Join Pool

Fork/Join by default uses a common thread pool
- default number of worker threads == number of logical cores - 1
- (submitting thread is pressed into service)

- can configure the pool via system properties:

- or create our own pool…

java.util.concurrent.ForkJoinPool.common.parallelism  
java.util.concurrent.ForkJoinPool.common.threadFactory  
java.util.concurrent.ForkJoinPool.common.exceptionHandler



Custom Fork/Join Pool

When used inside a ForkJoinPool, the ForkJoinTask.fork() 
method uses the current pool:

ForkJoinPool ourOwnPool = new ForkJoinPool(10);

ourOwnPool.invoke(
() -> stream.parallel(). 
             ⋮



Don’t Have Too Few Threads!

• Fork/Join pool uses a work queue
• If tasks are CPU bound, no use increasing the size of the 

thread pool
• But if not CPU bound, they are sitting in queue 

accumulating dead time
• Can make thread pool bigger to reduce dead time
• Little’s Law tells us 

Number of tasks in the system = 
Arrival rate * Average service time



Little’s Law Example

System receives 400 Txs and it takes 100ms to clear a request
- Number of tasks in system = 0.100 * 400 = 40

On an 8 core machine with a CPU bound task
- implies 32 tasks are sitting in queue accumulating dead time

- Average response time 600 ms of which 500ms is dead time
- ~83% of service time is in waiting



public final V invoke() {
    ForkJoinPool.common.getMonitor().submitTask(this);
    int s;
    if ((s = doInvoke() & DONE_MASK) != NORMAL) reportException(s);
    ForkJoinPool.common.getMonitor().retireTask(this);
    return getRawResult();
}

ForkJoinPool Observability

ForkJoinPool comes with no visibility
- need to instrument ForkJoinTask.invoke()

– gather data from ForkJoinPool to feed into Little’s Law



Conclusions

Sequential stream performance comparable to imperative code
Going parallel is worthwhile IF
- task is suitable

- data source is suitable

- environment is suitable

Need to monitor JDK to understanding bottlenecks
- Fork/Join pool is not well instrumented
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