
Shooting the Rapids:
Getting the Best from Java 8

Streams

Kirk Pepperdine
@kcpeppe

Maurice Naftalin
@mauricenaftalin

About Kirk

• Specialises in performance tuning
• speaks frequently about performance
• author of performance tuning workshop

• Co-founder jClarity
• performance diagnositic tooling

• Java Champion (since 2006)

About Kirk

• Specialises in performance tuning
• speaks frequently about performance
• author of performance tuning workshop

• Co-founder jClarity
• performance diagnositic tooling

• Java Champion (since 2006)

About Maurice

About Maurice

About Maurice

Co-author Author

About Maurice

Co-author Author

Java
Champion

JavaOne
Rock Star

Agenda

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons
• Justifying the Overhead

Example: Processing GC Logfile

⋮
2.869: Application time: 1.0001540 seconds
5.342: Application time: 0.0801231 seconds
8.382: Application time: 1.1013574 seconds
⋮

Example: Processing GC Logfile

⋮
2.869: Application time: 1.0001540 seconds
5.342: Application time: 0.0801231 seconds
8.382: Application time: 1.1013574 seconds
⋮

sum=2.181635

Example: Processing GC Logfile

⋮
2.869: Application time: 1.0001540 seconds
5.342: Application time: 0.0801231 seconds
8.382: Application time: 1.1013574 seconds
⋮

Example: Processing GC Logfile

⋮
2.869: Application time: 1.0001540 seconds
5.342: Application time: 0.0801231 seconds
8.382: Application time: 1.1013574 seconds
⋮

DoubleSummaryStatistics
{count=3, sum=2.181635, min=0.080123, average=0.727212,
max=1.101357}

Application time: (\\d+\\.\\d+)

Example: Processing GC Logfile

⋮
2.869: Application time: 1.0001540 seconds
5.342: Application time: 0.0801231 seconds
8.382: Application time: 1.1013574 seconds
⋮

Regex:

Application time: (\\d+\\.\\d+)
Pattern stoppedTimePattern =
 Pattern.compile(" ");

⋮
Matcher matcher = stoppedTimePattern.matcher(logRecord);
String value = matcher.group(1);

Example: Processing GC Logfile

Processing GC Logfile: Old School Code

Pattern stoppedTimePattern =
 Pattern.compile("Application time: (\\d+\\.\\d+)");

String logRecord;  
double value = 0;  
while ((logRecord = logFileReader.readLine()) != null) {  

Matcher matcher = stoppedTimePattern.matcher(logRecord);  
if (matcher.find()) {  

value += (Double.parseDouble(matcher.group(1)));  
} 

}

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

What is a Lambda?

matcher
matcher.find()

matcher
matcher.find()

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

Predicate<Matcher> matches =

What is a Lambda?

matcher
matcher.find()

matcher
matcher.find()

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

Predicate<Matcher> matches =

What is a Lambda?

matcher

Predicate<Matcher> matches =

matcher.find()
matcher

matcher.find()

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

Predicate<Matcher> matches =

What is a Lambda?

matcherPredicate<Matcher> matches =

matcher.find()
matcher

matcher.find()

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

Predicate<Matcher> matches =

What is a Lambda?

matcherPredicate<Matcher> matches =

matcher.find()

->

matcher
matcher.find()

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

Predicate<Matcher> matches =

What is a Lambda?

matcherPredicate<Matcher> matches = matcher.find()->

matcher
matcher.find()

Predicate<Matcher> matches = new Predicate<Matcher>() { 
 @Override 
 public boolean test(Matcher matcher) { 
 return matcher.find(); 
 } 
};

Predicate<Matcher> matches =

What is a Lambda?

matcherPredicate<Matcher> matches =

A lambda is a function
from arguments to result

matcher.find()->

matcher
matcher.find()

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

data source

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

start streaming

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

map to Matcher

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

filter out
uninteresting bits

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

extract group

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics(); 

map String to
Double

Processing Logfile: Stream Code

DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines() 

.map(input -> stoppedTimePattern.matcher(input))  

.filter(matcher -> matcher.find())  

.map(matcher -> matcher.group(1))  

.mapToDouble(s -> Double.parseDouble(s))  

.summaryStatistics();  aggregate results

What is a Stream?

• A sequence of values
• source and intermediate operations set the stream up lazily:

Stream<String> groupStream =  
logFileReader.lines()  

.map(stoppedTimePattern::matcher)  

.filter(Matcher::find)  

.map(matcher -> matcher.group(1))

.mapToDouble(Double::parseDouble);

Source

What is a Stream?

• A sequence of values
• source and intermediate operations set the stream up lazily:

Stream<String> groupStream =  
logFileReader.lines()  

.map(stoppedTimePattern::matcher)  

.filter(Matcher::find)  

.map(matcher -> matcher.group(1))

.mapToDouble(Double::parseDouble);

Intermediate
Operations

What is a Stream?

• The terminal operation pulls the values down the stream:

SummaryStatistics statistics =  
logFileReader.lines()  

.map(stoppedTimePattern::matcher)  

.filter(Matcher::find)  

.map(matcher -> matcher.group(1))

.mapToDouble(Double::parseDouble)

.summaryStatistics();Terminal
Operation

Visualising Sequential Streams

x2x0 x1 x3x0 x1 x2 x3

Source Map Filter Reduction

Intermediate
Operations

Terminal
Operation

“Values in Motion”

Visualising Sequential Streams

x2x0 x1 x3x1 x2 x3 ✔

Source Map Filter Reduction

Intermediate
Operations

Terminal
Operation

“Values in Motion”

Visualising Sequential Streams

x2x0 x1 x3 x1x2 x3 ❌✔

Source Map Filter Reduction

Intermediate
Operations

Terminal
Operation

“Values in Motion”

Visualising Sequential Streams

x2x0 x1 x3 x1x2x3 ❌✔

Source Map Filter Reduction

Intermediate
Operations

Terminal
Operation

“Values in Motion”

Old School: 80200ms
Sequential: 25800ms

(>9m lines, MacBook Pro, Haswell i7, 4 cores, hyperthreaded)

Stream code is faster because operations are fused

How Does That Perform?

Can We Do Better?

Parallel streams make use of multiple cores
• split the data into segments
• each segment processed by its own thread

- on its own core – if possible

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

Splitting the Data

Implemented by a Spliterator:

x2

Visualizing Parallel Streams

x0
x1

x3

x0

x1
x2
x3

x2

Visualizing Parallel Streams

x0

x1

x3

x0

x1

x2
x3

x2

Visualizing Parallel Streams

x1

x3

x0

x1

x3

✔

❌

x2

Visualizing Parallel Streams

x1 y3

x0

x1

x3

✔

❌

Stream Code
DoubleSummaryStatistics summaryStatistics =  

logFileReader.lines().parallel() 

.map(stoppedTimePattern::matcher) 

.filter(Matcher::find) 

.map(matcher -> matcher.group(1))  

.mapToDouble(Double::parseDouble) 

.summaryStatistics();

Results of Going Parallel:

• No benefit from using parallel streams while streaming data

Agenda

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons
• Justifying the Overhead

Poorly Splitting Sources

• Some sources split much worse than others
– LinkedList vs. ArrayList

Poorly Splitting Sources

• Some sources split much worse than others
– LinkedList vs. ArrayList

• Streaming I/O is bad.
– kills the advantage of going parallel

Poorly Splitting Sources

• Some sources split much worse than others
– LinkedList vs. ArrayList

• Streaming I/O is bad.
– kills the advantage of going parallel

Poorly Splitting Sources

Streaming I/O Bottleneck

x2x0 x1 x3x0 x1 x2 x3

Streaming I/O Bottleneck

✔

❌
x2x1x0 x1 x3

5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coverage

5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coverage

MappedByteBuffer

5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coverage

MappedByteBuffer mid

5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coverage

MappedByteBuffer mid

5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coveragenew spliterator coverage

MappedByteBuffer mid

5.342: … nds

LineSpliterator

2.869: Applicati … seconds \n 8.382: … nds 9.337:App … nds\n \n \n

spliterator coveragenew spliterator coverage

MappedByteBuffer mid

Included in JDK9 as FileChannelLinesSpliterator

StreamingIO: 56s
Spliterator: 88s

(>9m lines, MacBook Pro, Haswell i7, 4 cores, hyperthreaded)

Stream code is faster because operations are fused

LineSpliterator – results

When to Use Parallel Streams?

When to Use Parallel Streams?
• Task must be recursively decomposable

– subtasks for each data segment must be independent

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

When to Use Parallel Streams?
• Task must be recursively decomposable

– subtasks for each data segment must be independent

• Source must be well-splitting

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

When to Use Parallel Streams?
• Task must be recursively decomposable

– subtasks for each data segment must be independent

• Source must be well-splitting
• Enough hardware to support all VM needs

– there may be other business afoot

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

When to Use Parallel Streams?
• Task must be recursively decomposable

– subtasks for each data segment must be independent

• Source must be well-splitting
• Enough hardware to support all VM needs

– there may be other business afoot

• Overhead of splitting must be justified
– intermediate operations need to be expensive
– and CPU-bound

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

When to Use Parallel Streams?
• Task must be recursively decomposable

– subtasks for each data segment must be independent

• Source must be well-splitting
• Enough hardware to support all VM needs

– there may be other business afoot

• Overhead of splitting must be justified
– intermediate operations need to be expensive
– and CPU-bound

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

Agenda

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons
• Justifying the Overhead

Tragedy of the Commons

Tragedy of the Commons

You have a finite amount of hardware
– it might be in your best interest to grab it all
– but if everyone behaves the same way…

Agenda

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons

Agenda

• Introduction
– lambdas, streams, and a logfile processing problem

• Optimizing stream sources
• Tragedy Of The Commons
• Justifying the Overhead

Justifying the Overhead

CPNQ performance model:

C - number of submitters
P - number of CPUs
N - number of elements
Q - cost of the operation

Justifying the Overhead

Need to amortize setup costs
– N*Q needs to be large
– Q can often only be estimated
– N often should be >10,000 elements

If P is the number of processors, the formula assumes that
intermediate tasks are CPU bound

Don’t Have Too Many Threads!

• Too many threads cause frequent handoffs
• It costs ~80,000 cycles to handoff data between threads
• You can do a lot of processing in 80,000 cycles!

Fork/Join

Fork/Join
• Parallel streams implemented by Fork/Join framework

• added in Java 7, but difficult to code
• parallel streams are more usable

Fork/Join
• Parallel streams implemented by Fork/Join framework

• added in Java 7, but difficult to code
• parallel streams are more usable

Fork/Join
• Parallel streams implemented by Fork/Join framework

• added in Java 7, but difficult to code
• parallel streams are more usable

• Each segment of data is submitted as a ForkJoinTask
• ForkJoinTask.invoke() spawns a new task
• ForkJoinTask.join() retrieves the result

Fork/Join
• Parallel streams implemented by Fork/Join framework

• added in Java 7, but difficult to code
• parallel streams are more usable

• Each segment of data is submitted as a ForkJoinTask
• ForkJoinTask.invoke() spawns a new task
• ForkJoinTask.join() retrieves the result

• How Fork/Join works and performs is important to your
latency picture

Common Fork/Join Pool

Fork/Join by default uses a common thread pool
- default number of worker threads == number of logical cores - 1
- (submitting thread is pressed into service)

- can configure the pool via system properties:

- or create our own pool…

java.util.concurrent.ForkJoinPool.common.parallelism  
java.util.concurrent.ForkJoinPool.common.threadFactory  
java.util.concurrent.ForkJoinPool.common.exceptionHandler

Custom Fork/Join Pool

When used inside a ForkJoinPool, the ForkJoinTask.fork()
method uses the current pool:

ForkJoinPool ourOwnPool = new ForkJoinPool(10);

ourOwnPool.invoke(
() -> stream.parallel().
 ⋮

Don’t Have Too Few Threads!

• Fork/Join pool uses a work queue
• If tasks are CPU bound, no use increasing the size of the

thread pool
• But if not CPU bound, they are sitting in queue

accumulating dead time
• Can make thread pool bigger to reduce dead time
• Little’s Law tells us

Number of tasks in the system = 
Arrival rate * Average service time

Little’s Law Example

System receives 400 Txs and it takes 100ms to clear a request
- Number of tasks in system = 0.100 * 400 = 40

On an 8 core machine with a CPU bound task
- implies 32 tasks are sitting in queue accumulating dead time

- Average response time 600 ms of which 500ms is dead time
- ~83% of service time is in waiting

public final V invoke() {
 ForkJoinPool.common.getMonitor().submitTask(this);
 int s;
 if ((s = doInvoke() & DONE_MASK) != NORMAL) reportException(s);
 ForkJoinPool.common.getMonitor().retireTask(this);
 return getRawResult();
}

ForkJoinPool Observability

ForkJoinPool comes with no visibility
- need to instrument ForkJoinTask.invoke()

– gather data from ForkJoinPool to feed into Little’s Law

Conclusions

Sequential stream performance comparable to imperative code
Going parallel is worthwhile IF
- task is suitable

- data source is suitable

- environment is suitable

Need to monitor JDK to understanding bottlenecks
- Fork/Join pool is not well instrumented

Questions?

Questions?

